Metamath Proof Explorer


Theorem tocyc01

Description: Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023)

Ref Expression
Hypothesis tocyc01.1 C=toCycD
Assertion tocyc01 DVWdomC.-101CW=ID

Proof

Step Hyp Ref Expression
1 tocyc01.1 C=toCycD
2 simpl DVWdomC.-101DV
3 simpr DVWdomC.-101WdomC.-101
4 3 elin1d DVWdomC.-101WdomC
5 eqid SymGrpD=SymGrpD
6 eqid BaseSymGrpD=BaseSymGrpD
7 1 5 6 tocycf DVC:wWordD|w:domw1-1DBaseSymGrpD
8 fdm C:wWordD|w:domw1-1DBaseSymGrpDdomC=wWordD|w:domw1-1D
9 2 7 8 3syl DVWdomC.-101domC=wWordD|w:domw1-1D
10 4 9 eleqtrd DVWdomC.-101WwWordD|w:domw1-1D
11 id w=Ww=W
12 dmeq w=Wdomw=domW
13 eqidd w=WD=D
14 11 12 13 f1eq123d w=Ww:domw1-1DW:domW1-1D
15 14 elrab WwWordD|w:domw1-1DWWordDW:domW1-1D
16 10 15 sylib DVWdomC.-101WWordDW:domW1-1D
17 16 simpld DVWdomC.-101WWordD
18 16 simprd DVWdomC.-101W:domW1-1D
19 1 2 17 18 tocycfv DVWdomC.-101CW=IDranWWcyclShift1W-1
20 19 adantr DVWdomC.-101W=0CW=IDranWWcyclShift1W-1
21 hasheq0 WdomC.-101W=0W=
22 3 21 syl DVWdomC.-101W=0W=
23 22 biimpa DVWdomC.-101W=0W=
24 rneq W=ranW=ran
25 rn0 ran=
26 24 25 eqtrdi W=ranW=
27 26 difeq2d W=DranW=D
28 dif0 D=D
29 27 28 eqtrdi W=DranW=D
30 29 reseq2d W=IDranW=ID
31 cnveq W=W-1=-1
32 cnv0 -1=
33 31 32 eqtrdi W=W-1=
34 33 coeq2d W=WcyclShift1W-1=WcyclShift1
35 co02 WcyclShift1=
36 34 35 eqtrdi W=WcyclShift1W-1=
37 30 36 uneq12d W=IDranWWcyclShift1W-1=ID
38 un0 ID=ID
39 37 38 eqtrdi W=IDranWWcyclShift1W-1=ID
40 23 39 syl DVWdomC.-101W=0IDranWWcyclShift1W-1=ID
41 20 40 eqtrd DVWdomC.-101W=0CW=ID
42 19 adantr DVWdomC.-101W=1CW=IDranWWcyclShift1W-1
43 17 adantr DVWdomC.-101W=1WWordD
44 1zzd DVWdomC.-101W=11
45 simpr DVWdomC.-101W=1W=1
46 1cshid WWordD1W=1WcyclShift1=W
47 43 44 45 46 syl3anc DVWdomC.-101W=1WcyclShift1=W
48 47 coeq1d DVWdomC.-101W=1WcyclShift1W-1=WW-1
49 wrdf WWordDW:0..^WD
50 ffun W:0..^WDFunW
51 funcocnv2 FunWWW-1=IranW
52 43 49 50 51 4syl DVWdomC.-101W=1WW-1=IranW
53 48 52 eqtrd DVWdomC.-101W=1WcyclShift1W-1=IranW
54 53 uneq2d DVWdomC.-101W=1IDranWWcyclShift1W-1=IDranWIranW
55 resundi IDranWranW=IDranWIranW
56 frn W:0..^WDranWD
57 undifr ranWDDranWranW=D
58 56 57 sylib W:0..^WDDranWranW=D
59 43 49 58 3syl DVWdomC.-101W=1DranWranW=D
60 59 reseq2d DVWdomC.-101W=1IDranWranW=ID
61 55 60 eqtr3id DVWdomC.-101W=1IDranWIranW=ID
62 42 54 61 3eqtrd DVWdomC.-101W=1CW=ID
63 3 elin2d DVWdomC.-101W.-101
64 hashf .:V0+∞
65 ffn .:V0+∞.FnV
66 elpreima .FnVW.-101WVW01
67 64 65 66 mp2b W.-101WVW01
68 63 67 sylib DVWdomC.-101WVW01
69 68 simprd DVWdomC.-101W01
70 elpri W01W=0W=1
71 69 70 syl DVWdomC.-101W=0W=1
72 41 62 71 mpjaodan DVWdomC.-101CW=ID