Description: Permutation cycles built from the empty set or a singleton are the identity. (Contributed by Thierry Arnoux, 21-Nov-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | tocyc01.1 | |
|
Assertion | tocyc01 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocyc01.1 | |
|
2 | simpl | |
|
3 | simpr | |
|
4 | 3 | elin1d | |
5 | eqid | |
|
6 | eqid | |
|
7 | 1 5 6 | tocycf | |
8 | fdm | |
|
9 | 2 7 8 | 3syl | |
10 | 4 9 | eleqtrd | |
11 | id | |
|
12 | dmeq | |
|
13 | eqidd | |
|
14 | 11 12 13 | f1eq123d | |
15 | 14 | elrab | |
16 | 10 15 | sylib | |
17 | 16 | simpld | |
18 | 16 | simprd | |
19 | 1 2 17 18 | tocycfv | |
20 | 19 | adantr | |
21 | hasheq0 | |
|
22 | 3 21 | syl | |
23 | 22 | biimpa | |
24 | rneq | |
|
25 | rn0 | |
|
26 | 24 25 | eqtrdi | |
27 | 26 | difeq2d | |
28 | dif0 | |
|
29 | 27 28 | eqtrdi | |
30 | 29 | reseq2d | |
31 | cnveq | |
|
32 | cnv0 | |
|
33 | 31 32 | eqtrdi | |
34 | 33 | coeq2d | |
35 | co02 | |
|
36 | 34 35 | eqtrdi | |
37 | 30 36 | uneq12d | |
38 | un0 | |
|
39 | 37 38 | eqtrdi | |
40 | 23 39 | syl | |
41 | 20 40 | eqtrd | |
42 | 19 | adantr | |
43 | 17 | adantr | |
44 | 1zzd | |
|
45 | simpr | |
|
46 | 1cshid | |
|
47 | 43 44 45 46 | syl3anc | |
48 | 47 | coeq1d | |
49 | wrdf | |
|
50 | ffun | |
|
51 | funcocnv2 | |
|
52 | 43 49 50 51 | 4syl | |
53 | 48 52 | eqtrd | |
54 | 53 | uneq2d | |
55 | resundi | |
|
56 | frn | |
|
57 | undifr | |
|
58 | 56 57 | sylib | |
59 | 43 49 58 | 3syl | |
60 | 59 | reseq2d | |
61 | 55 60 | eqtr3id | |
62 | 42 54 61 | 3eqtrd | |
63 | 3 | elin2d | |
64 | hashf | |
|
65 | ffn | |
|
66 | elpreima | |
|
67 | 64 65 66 | mp2b | |
68 | 63 67 | sylib | |
69 | 68 | simprd | |
70 | elpri | |
|
71 | 69 70 | syl | |
72 | 41 62 71 | mpjaodan | |