Metamath Proof Explorer


Theorem uniiccdif

Description: A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015)

Ref Expression
Hypothesis uniioombl.1 φF:2
Assertion uniiccdif φran.Fran.Fvol*ran.Fran.F=0

Proof

Step Hyp Ref Expression
1 uniioombl.1 φF:2
2 ssun1 ran.Fran.F1stranF2ndranF
3 ovolfcl F:2x1stFx2ndFx1stFx2ndFx
4 1 3 sylan φx1stFx2ndFx1stFx2ndFx
5 rexr 1stFx1stFx*
6 rexr 2ndFx2ndFx*
7 id 1stFx2ndFx1stFx2ndFx
8 prunioo 1stFx*2ndFx*1stFx2ndFx1stFx2ndFx1stFx2ndFx=1stFx2ndFx
9 5 6 7 8 syl3an 1stFx2ndFx1stFx2ndFx1stFx2ndFx1stFx2ndFx=1stFx2ndFx
10 4 9 syl φx1stFx2ndFx1stFx2ndFx=1stFx2ndFx
11 fvco3 F:2x.Fx=.Fx
12 1 11 sylan φx.Fx=.Fx
13 1 ffvelcdmda φxFx2
14 13 elin2d φxFx2
15 1st2nd2 Fx2Fx=1stFx2ndFx
16 14 15 syl φxFx=1stFx2ndFx
17 16 fveq2d φx.Fx=.1stFx2ndFx
18 df-ov 1stFx2ndFx=.1stFx2ndFx
19 17 18 eqtr4di φx.Fx=1stFx2ndFx
20 12 19 eqtrd φx.Fx=1stFx2ndFx
21 df-pr 1stFx2ndFx=1stFx2ndFx
22 fvco3 F:2x1stFx=1stFx
23 1 22 sylan φx1stFx=1stFx
24 fvco3 F:2x2ndFx=2ndFx
25 1 24 sylan φx2ndFx=2ndFx
26 23 25 preq12d φx1stFx2ndFx=1stFx2ndFx
27 21 26 eqtr3id φx1stFx2ndFx=1stFx2ndFx
28 20 27 uneq12d φx.Fx1stFx2ndFx=1stFx2ndFx1stFx2ndFx
29 fvco3 F:2x.Fx=.Fx
30 1 29 sylan φx.Fx=.Fx
31 16 fveq2d φx.Fx=.1stFx2ndFx
32 df-ov 1stFx2ndFx=.1stFx2ndFx
33 31 32 eqtr4di φx.Fx=1stFx2ndFx
34 30 33 eqtrd φx.Fx=1stFx2ndFx
35 10 28 34 3eqtr4rd φx.Fx=.Fx1stFx2ndFx
36 35 iuneq2dv φx.Fx=x.Fx1stFx2ndFx
37 iccf .:*×*𝒫*
38 ffn .:*×*𝒫*.Fn*×*
39 37 38 ax-mp .Fn*×*
40 inss2 22
41 rexpssxrxp 2*×*
42 40 41 sstri 2*×*
43 fss F:22*×*F:*×*
44 1 42 43 sylancl φF:*×*
45 fnfco .Fn*×*F:*×*.FFn
46 39 44 45 sylancr φ.FFn
47 fniunfv .FFnx.Fx=ran.F
48 46 47 syl φx.Fx=ran.F
49 iunun x.Fx1stFx2ndFx=x.Fxx1stFx2ndFx
50 ioof .:*×*𝒫
51 ffn .:*×*𝒫.Fn*×*
52 50 51 ax-mp .Fn*×*
53 fnfco .Fn*×*F:*×*.FFn
54 52 44 53 sylancr φ.FFn
55 fniunfv .FFnx.Fx=ran.F
56 54 55 syl φx.Fx=ran.F
57 iunun x1stFx2ndFx=x1stFxx2ndFx
58 fo1st 1st:VontoV
59 fofn 1st:VontoV1stFnV
60 58 59 ax-mp 1stFnV
61 ssv 2V
62 fss F:22VF:V
63 1 61 62 sylancl φF:V
64 fnfco 1stFnVF:V1stFFn
65 60 63 64 sylancr φ1stFFn
66 fnfun 1stFFnFun1stF
67 65 66 syl φFun1stF
68 fndm 1stFFndom1stF=
69 eqimss2 dom1stF=dom1stF
70 65 68 69 3syl φdom1stF
71 dfimafn2 Fun1stFdom1stF1stF=x1stFx
72 67 70 71 syl2anc φ1stF=x1stFx
73 fnima 1stFFn1stF=ran1stF
74 65 73 syl φ1stF=ran1stF
75 72 74 eqtr3d φx1stFx=ran1stF
76 rnco2 ran1stF=1stranF
77 75 76 eqtrdi φx1stFx=1stranF
78 fo2nd 2nd:VontoV
79 fofn 2nd:VontoV2ndFnV
80 78 79 ax-mp 2ndFnV
81 fnfco 2ndFnVF:V2ndFFn
82 80 63 81 sylancr φ2ndFFn
83 fnfun 2ndFFnFun2ndF
84 82 83 syl φFun2ndF
85 fndm 2ndFFndom2ndF=
86 eqimss2 dom2ndF=dom2ndF
87 82 85 86 3syl φdom2ndF
88 dfimafn2 Fun2ndFdom2ndF2ndF=x2ndFx
89 84 87 88 syl2anc φ2ndF=x2ndFx
90 fnima 2ndFFn2ndF=ran2ndF
91 82 90 syl φ2ndF=ran2ndF
92 89 91 eqtr3d φx2ndFx=ran2ndF
93 rnco2 ran2ndF=2ndranF
94 92 93 eqtrdi φx2ndFx=2ndranF
95 77 94 uneq12d φx1stFxx2ndFx=1stranF2ndranF
96 57 95 eqtrid φx1stFx2ndFx=1stranF2ndranF
97 56 96 uneq12d φx.Fxx1stFx2ndFx=ran.F1stranF2ndranF
98 49 97 eqtrid φx.Fx1stFx2ndFx=ran.F1stranF2ndranF
99 36 48 98 3eqtr3d φran.F=ran.F1stranF2ndranF
100 2 99 sseqtrrid φran.Fran.F
101 ovolficcss F:2ran.F
102 1 101 syl φran.F
103 102 ssdifssd φran.Fran.F
104 omelon ωOn
105 nnenom ω
106 105 ensymi ω
107 isnumi ωOnωdomcard
108 104 106 107 mp2an domcard
109 fofun 1st:VontoVFun1st
110 58 109 ax-mp Fun1st
111 ssv ranFV
112 fof 1st:VontoV1st:VV
113 58 112 ax-mp 1st:VV
114 113 fdmi dom1st=V
115 111 114 sseqtrri ranFdom1st
116 fores Fun1stranFdom1st1stranF:ranFonto1stranF
117 110 115 116 mp2an 1stranF:ranFonto1stranF
118 1 ffnd φFFn
119 dffn4 FFnF:ontoranF
120 118 119 sylib φF:ontoranF
121 foco 1stranF:ranFonto1stranFF:ontoranF1stranFF:onto1stranF
122 117 120 121 sylancr φ1stranFF:onto1stranF
123 fodomnum domcard1stranFF:onto1stranF1stranF
124 108 122 123 mpsyl φ1stranF
125 domentr 1stranFω1stranFω
126 124 105 125 sylancl φ1stranFω
127 fofun 2nd:VontoVFun2nd
128 78 127 ax-mp Fun2nd
129 fof 2nd:VontoV2nd:VV
130 78 129 ax-mp 2nd:VV
131 130 fdmi dom2nd=V
132 111 131 sseqtrri ranFdom2nd
133 fores Fun2ndranFdom2nd2ndranF:ranFonto2ndranF
134 128 132 133 mp2an 2ndranF:ranFonto2ndranF
135 foco 2ndranF:ranFonto2ndranFF:ontoranF2ndranFF:onto2ndranF
136 134 120 135 sylancr φ2ndranFF:onto2ndranF
137 fodomnum domcard2ndranFF:onto2ndranF2ndranF
138 108 136 137 mpsyl φ2ndranF
139 domentr 2ndranFω2ndranFω
140 138 105 139 sylancl φ2ndranFω
141 unctb 1stranFω2ndranFω1stranF2ndranFω
142 126 140 141 syl2anc φ1stranF2ndranFω
143 ctex 1stranF2ndranFω1stranF2ndranFV
144 142 143 syl φ1stranF2ndranFV
145 ssid ran.Fran.F
146 145 99 sseqtrid φran.Fran.F1stranF2ndranF
147 ssundif ran.Fran.F1stranF2ndranFran.Fran.F1stranF2ndranF
148 146 147 sylib φran.Fran.F1stranF2ndranF
149 ssdomg 1stranF2ndranFVran.Fran.F1stranF2ndranFran.Fran.F1stranF2ndranF
150 144 148 149 sylc φran.Fran.F1stranF2ndranF
151 domtr ran.Fran.F1stranF2ndranF1stranF2ndranFωran.Fran.Fω
152 150 142 151 syl2anc φran.Fran.Fω
153 domentr ran.Fran.Fωωran.Fran.F
154 152 106 153 sylancl φran.Fran.F
155 ovolctb2 ran.Fran.Fran.Fran.Fvol*ran.Fran.F=0
156 103 154 155 syl2anc φvol*ran.Fran.F=0
157 100 156 jca φran.Fran.Fvol*ran.Fran.F=0