Metamath Proof Explorer


Theorem ushgredgedgloop

Description: In a simple hypergraph there is a 1-1 onto mapping between the indexed edges being loops at a fixed vertex N and the set of loops at this vertex N . (Contributed by AV, 11-Dec-2020) (Revised by AV, 6-Jul-2022)

Ref Expression
Hypotheses ushgredgedgloop.e E=EdgG
ushgredgedgloop.i I=iEdgG
ushgredgedgloop.a A=idomI|Ii=N
ushgredgedgloop.b B=eE|e=N
ushgredgedgloop.f F=xAIx
Assertion ushgredgedgloop GUSHGraphNVF:A1-1 ontoB

Proof

Step Hyp Ref Expression
1 ushgredgedgloop.e E=EdgG
2 ushgredgedgloop.i I=iEdgG
3 ushgredgedgloop.a A=idomI|Ii=N
4 ushgredgedgloop.b B=eE|e=N
5 ushgredgedgloop.f F=xAIx
6 eqid VtxG=VtxG
7 6 2 ushgrf GUSHGraphI:domI1-1𝒫VtxG
8 7 adantr GUSHGraphNVI:domI1-1𝒫VtxG
9 ssrab2 idomI|Ii=NdomI
10 f1ores I:domI1-1𝒫VtxGidomI|Ii=NdomIIidomI|Ii=N:idomI|Ii=N1-1 ontoIidomI|Ii=N
11 8 9 10 sylancl GUSHGraphNVIidomI|Ii=N:idomI|Ii=N1-1 ontoIidomI|Ii=N
12 3 a1i GUSHGraphNVA=idomI|Ii=N
13 eqidd GUSHGraphNVxAIx=Ix
14 12 13 mpteq12dva GUSHGraphNVxAIx=xidomI|Ii=NIx
15 5 14 eqtrid GUSHGraphNVF=xidomI|Ii=NIx
16 f1f I:domI1-1𝒫VtxGI:domI𝒫VtxG
17 7 16 syl GUSHGraphI:domI𝒫VtxG
18 9 a1i GUSHGraphidomI|Ii=NdomI
19 17 18 feqresmpt GUSHGraphIidomI|Ii=N=xidomI|Ii=NIx
20 19 adantr GUSHGraphNVIidomI|Ii=N=xidomI|Ii=NIx
21 15 20 eqtr4d GUSHGraphNVF=IidomI|Ii=N
22 ushgruhgr GUSHGraphGUHGraph
23 eqid iEdgG=iEdgG
24 23 uhgrfun GUHGraphFuniEdgG
25 22 24 syl GUSHGraphFuniEdgG
26 2 funeqi FunIFuniEdgG
27 25 26 sylibr GUSHGraphFunI
28 27 adantr GUSHGraphNVFunI
29 dfimafn FunIidomI|Ii=NdomIIidomI|Ii=N=e|jidomI|Ii=NIj=e
30 28 9 29 sylancl GUSHGraphNVIidomI|Ii=N=e|jidomI|Ii=NIj=e
31 fveqeq2 i=jIi=NIj=N
32 31 elrab jidomI|Ii=NjdomIIj=N
33 simpl jdomIIj=NjdomI
34 fvelrn FunIjdomIIjranI
35 2 eqcomi iEdgG=I
36 35 rneqi raniEdgG=ranI
37 34 36 eleqtrrdi FunIjdomIIjraniEdgG
38 28 33 37 syl2an GUSHGraphNVjdomIIj=NIjraniEdgG
39 38 3adant3 GUSHGraphNVjdomIIj=NIj=fIjraniEdgG
40 eleq1 f=IjfraniEdgGIjraniEdgG
41 40 eqcoms Ij=ffraniEdgGIjraniEdgG
42 41 3ad2ant3 GUSHGraphNVjdomIIj=NIj=ffraniEdgGIjraniEdgG
43 39 42 mpbird GUSHGraphNVjdomIIj=NIj=ffraniEdgG
44 edgval EdgG=raniEdgG
45 44 a1i GUSHGraphEdgG=raniEdgG
46 1 45 eqtrid GUSHGraphE=raniEdgG
47 46 eleq2d GUSHGraphfEfraniEdgG
48 47 adantr GUSHGraphNVfEfraniEdgG
49 48 3ad2ant1 GUSHGraphNVjdomIIj=NIj=ffEfraniEdgG
50 43 49 mpbird GUSHGraphNVjdomIIj=NIj=ffE
51 eqeq1 Ij=fIj=Nf=N
52 51 biimpcd Ij=NIj=ff=N
53 52 adantl jdomIIj=NIj=ff=N
54 53 a1i GUSHGraphNVjdomIIj=NIj=ff=N
55 54 3imp GUSHGraphNVjdomIIj=NIj=ff=N
56 50 55 jca GUSHGraphNVjdomIIj=NIj=ffEf=N
57 56 3exp GUSHGraphNVjdomIIj=NIj=ffEf=N
58 32 57 biimtrid GUSHGraphNVjidomI|Ii=NIj=ffEf=N
59 58 rexlimdv GUSHGraphNVjidomI|Ii=NIj=ffEf=N
60 25 funfnd GUSHGraphiEdgGFndomiEdgG
61 fvelrnb iEdgGFndomiEdgGfraniEdgGjdomiEdgGiEdgGj=f
62 60 61 syl GUSHGraphfraniEdgGjdomiEdgGiEdgGj=f
63 35 dmeqi domiEdgG=domI
64 63 eleq2i jdomiEdgGjdomI
65 64 biimpi jdomiEdgGjdomI
66 65 adantr jdomiEdgGiEdgGj=fjdomI
67 66 adantl GUSHGraphf=NjdomiEdgGiEdgGj=fjdomI
68 35 fveq1i iEdgGj=Ij
69 68 eqeq2i f=iEdgGjf=Ij
70 69 biimpi f=iEdgGjf=Ij
71 70 eqcoms iEdgGj=ff=Ij
72 71 eqeq1d iEdgGj=ff=NIj=N
73 72 biimpcd f=NiEdgGj=fIj=N
74 73 adantl GUSHGraphf=NiEdgGj=fIj=N
75 74 adantld GUSHGraphf=NjdomiEdgGiEdgGj=fIj=N
76 75 imp GUSHGraphf=NjdomiEdgGiEdgGj=fIj=N
77 67 76 jca GUSHGraphf=NjdomiEdgGiEdgGj=fjdomIIj=N
78 77 32 sylibr GUSHGraphf=NjdomiEdgGiEdgGj=fjidomI|Ii=N
79 68 eqeq1i iEdgGj=fIj=f
80 79 biimpi iEdgGj=fIj=f
81 80 adantl jdomiEdgGiEdgGj=fIj=f
82 81 adantl GUSHGraphf=NjdomiEdgGiEdgGj=fIj=f
83 78 82 jca GUSHGraphf=NjdomiEdgGiEdgGj=fjidomI|Ii=NIj=f
84 83 ex GUSHGraphf=NjdomiEdgGiEdgGj=fjidomI|Ii=NIj=f
85 84 reximdv2 GUSHGraphf=NjdomiEdgGiEdgGj=fjidomI|Ii=NIj=f
86 85 ex GUSHGraphf=NjdomiEdgGiEdgGj=fjidomI|Ii=NIj=f
87 86 com23 GUSHGraphjdomiEdgGiEdgGj=ff=NjidomI|Ii=NIj=f
88 62 87 sylbid GUSHGraphfraniEdgGf=NjidomI|Ii=NIj=f
89 47 88 sylbid GUSHGraphfEf=NjidomI|Ii=NIj=f
90 89 impd GUSHGraphfEf=NjidomI|Ii=NIj=f
91 90 adantr GUSHGraphNVfEf=NjidomI|Ii=NIj=f
92 59 91 impbid GUSHGraphNVjidomI|Ii=NIj=ffEf=N
93 vex fV
94 eqeq2 e=fIj=eIj=f
95 94 rexbidv e=fjidomI|Ii=NIj=ejidomI|Ii=NIj=f
96 93 95 elab fe|jidomI|Ii=NIj=ejidomI|Ii=NIj=f
97 eqeq1 e=fe=Nf=N
98 97 4 elrab2 fBfEf=N
99 92 96 98 3bitr4g GUSHGraphNVfe|jidomI|Ii=NIj=efB
100 99 eqrdv GUSHGraphNVe|jidomI|Ii=NIj=e=B
101 30 100 eqtr2d GUSHGraphNVB=IidomI|Ii=N
102 21 12 101 f1oeq123d GUSHGraphNVF:A1-1 ontoBIidomI|Ii=N:idomI|Ii=N1-1 ontoIidomI|Ii=N
103 11 102 mpbird GUSHGraphNVF:A1-1 ontoB