Step |
Hyp |
Ref |
Expression |
1 |
|
utoptop.1 |
|
2 |
|
utopsnneip.1 |
|
3 |
|
utopsnneip.2 |
|
4 |
|
utopval |
|
5 |
1 4
|
eqtrid |
|
6 |
|
simpll |
|
7 |
|
simpr |
|
8 |
7
|
elpwid |
|
9 |
8
|
sselda |
|
10 |
|
simpr |
|
11 |
|
mptexg |
|
12 |
|
rnexg |
|
13 |
11 12
|
syl |
|
14 |
13
|
adantr |
|
15 |
3
|
fvmpt2 |
|
16 |
10 14 15
|
syl2anc |
|
17 |
16
|
eleq2d |
|
18 |
|
eqid |
|
19 |
18
|
elrnmpt |
|
20 |
19
|
elv |
|
21 |
17 20
|
bitrdi |
|
22 |
6 9 21
|
syl2anc |
|
23 |
|
nfv |
|
24 |
|
nfre1 |
|
25 |
23 24
|
nfan |
|
26 |
|
simplr |
|
27 |
|
eqimss2 |
|
28 |
27
|
adantl |
|
29 |
|
imaeq1 |
|
30 |
29
|
sseq1d |
|
31 |
30
|
rspcev |
|
32 |
26 28 31
|
syl2anc |
|
33 |
|
simpr |
|
34 |
25 32 33
|
r19.29af |
|
35 |
6
|
ad2antrr |
|
36 |
9
|
ad2antrr |
|
37 |
35 36
|
jca |
|
38 |
|
simpr |
|
39 |
8
|
ad3antrrr |
|
40 |
|
simplr |
|
41 |
|
eqid |
|
42 |
|
imaeq1 |
|
43 |
42
|
rspceeqv |
|
44 |
41 43
|
mpan2 |
|
45 |
44
|
adantl |
|
46 |
|
vex |
|
47 |
46
|
imaex |
|
48 |
3
|
ustuqtoplem |
|
49 |
47 48
|
mpan2 |
|
50 |
49
|
adantr |
|
51 |
45 50
|
mpbird |
|
52 |
35 36 40 51
|
syl21anc |
|
53 |
|
sseq1 |
|
54 |
53
|
3anbi2d |
|
55 |
|
eleq1 |
|
56 |
54 55
|
anbi12d |
|
57 |
56
|
imbi1d |
|
58 |
3
|
ustuqtop1 |
|
59 |
47 57 58
|
vtocl |
|
60 |
37 38 39 52 59
|
syl31anc |
|
61 |
37 21
|
syl |
|
62 |
60 61
|
mpbid |
|
63 |
62
|
r19.29an |
|
64 |
34 63
|
impbida |
|
65 |
22 64
|
bitrd |
|
66 |
65
|
ralbidva |
|
67 |
66
|
rabbidva |
|
68 |
5 67
|
eqtr4d |
|
69 |
68 2
|
eqtr4di |
|
70 |
69
|
fveq2d |
|
71 |
70
|
fveq1d |
|
72 |
71
|
adantr |
|
73 |
3
|
ustuqtop0 |
|
74 |
3
|
ustuqtop1 |
|
75 |
3
|
ustuqtop2 |
|
76 |
3
|
ustuqtop3 |
|
77 |
3
|
ustuqtop4 |
|
78 |
3
|
ustuqtop5 |
|
79 |
2 73 74 75 76 77 78
|
neiptopnei |
|
80 |
79
|
adantr |
|
81 |
|
simpr |
|
82 |
81
|
sneqd |
|
83 |
82
|
fveq2d |
|
84 |
|
simpr |
|
85 |
|
fvexd |
|
86 |
80 83 84 85
|
fvmptd |
|
87 |
|
mptexg |
|
88 |
|
rnexg |
|
89 |
87 88
|
syl |
|
90 |
89
|
adantr |
|
91 |
|
nfv |
|
92 |
|
nfmpt1 |
|
93 |
92
|
nfrn |
|
94 |
93
|
nfel1 |
|
95 |
91 94
|
nfan |
|
96 |
|
nfv |
|
97 |
95 96
|
nfan |
|
98 |
|
simpr2 |
|
99 |
98
|
sneqd |
|
100 |
99
|
imaeq2d |
|
101 |
100
|
3anassrs |
|
102 |
97 101
|
mpteq2da |
|
103 |
102
|
rneqd |
|
104 |
|
simpl |
|
105 |
|
simpr |
|
106 |
3 103 104 105
|
fvmptd2 |
|
107 |
84 90 106
|
syl2anc |
|
108 |
72 86 107
|
3eqtr2d |
|