Metamath Proof Explorer


Theorem utopsnneiplem

Description: The neighborhoods of a point P for the topology induced by an uniform space U . (Contributed by Thierry Arnoux, 11-Jan-2018)

Ref Expression
Hypotheses utoptop.1 J = unifTop U
utopsnneip.1 K = a 𝒫 X | p a a N p
utopsnneip.2 N = p X ran v U v p
Assertion utopsnneiplem U UnifOn X P X nei J P = ran v U v P

Proof

Step Hyp Ref Expression
1 utoptop.1 J = unifTop U
2 utopsnneip.1 K = a 𝒫 X | p a a N p
3 utopsnneip.2 N = p X ran v U v p
4 utopval U UnifOn X unifTop U = a 𝒫 X | p a w U w p a
5 1 4 eqtrid U UnifOn X J = a 𝒫 X | p a w U w p a
6 simpll U UnifOn X a 𝒫 X p a U UnifOn X
7 simpr U UnifOn X a 𝒫 X a 𝒫 X
8 7 elpwid U UnifOn X a 𝒫 X a X
9 8 sselda U UnifOn X a 𝒫 X p a p X
10 simpr U UnifOn X p X p X
11 mptexg U UnifOn X v U v p V
12 rnexg v U v p V ran v U v p V
13 11 12 syl U UnifOn X ran v U v p V
14 13 adantr U UnifOn X p X ran v U v p V
15 3 fvmpt2 p X ran v U v p V N p = ran v U v p
16 10 14 15 syl2anc U UnifOn X p X N p = ran v U v p
17 16 eleq2d U UnifOn X p X a N p a ran v U v p
18 eqid v U v p = v U v p
19 18 elrnmpt a V a ran v U v p v U a = v p
20 19 elv a ran v U v p v U a = v p
21 17 20 bitrdi U UnifOn X p X a N p v U a = v p
22 6 9 21 syl2anc U UnifOn X a 𝒫 X p a a N p v U a = v p
23 nfv v U UnifOn X a 𝒫 X p a
24 nfre1 v v U a = v p
25 23 24 nfan v U UnifOn X a 𝒫 X p a v U a = v p
26 simplr U UnifOn X a 𝒫 X p a v U a = v p v U a = v p v U
27 eqimss2 a = v p v p a
28 27 adantl U UnifOn X a 𝒫 X p a v U a = v p v U a = v p v p a
29 imaeq1 w = v w p = v p
30 29 sseq1d w = v w p a v p a
31 30 rspcev v U v p a w U w p a
32 26 28 31 syl2anc U UnifOn X a 𝒫 X p a v U a = v p v U a = v p w U w p a
33 simpr U UnifOn X a 𝒫 X p a v U a = v p v U a = v p
34 25 32 33 r19.29af U UnifOn X a 𝒫 X p a v U a = v p w U w p a
35 6 ad2antrr U UnifOn X a 𝒫 X p a w U w p a U UnifOn X
36 9 ad2antrr U UnifOn X a 𝒫 X p a w U w p a p X
37 35 36 jca U UnifOn X a 𝒫 X p a w U w p a U UnifOn X p X
38 simpr U UnifOn X a 𝒫 X p a w U w p a w p a
39 8 ad3antrrr U UnifOn X a 𝒫 X p a w U w p a a X
40 simplr U UnifOn X a 𝒫 X p a w U w p a w U
41 eqid w p = w p
42 imaeq1 u = w u p = w p
43 42 rspceeqv w U w p = w p u U w p = u p
44 41 43 mpan2 w U u U w p = u p
45 44 adantl U UnifOn X p X w U u U w p = u p
46 vex w V
47 46 imaex w p V
48 3 ustuqtoplem U UnifOn X p X w p V w p N p u U w p = u p
49 47 48 mpan2 U UnifOn X p X w p N p u U w p = u p
50 49 adantr U UnifOn X p X w U w p N p u U w p = u p
51 45 50 mpbird U UnifOn X p X w U w p N p
52 35 36 40 51 syl21anc U UnifOn X a 𝒫 X p a w U w p a w p N p
53 sseq1 b = w p b a w p a
54 53 3anbi2d b = w p U UnifOn X p X b a a X U UnifOn X p X w p a a X
55 eleq1 b = w p b N p w p N p
56 54 55 anbi12d b = w p U UnifOn X p X b a a X b N p U UnifOn X p X w p a a X w p N p
57 56 imbi1d b = w p U UnifOn X p X b a a X b N p a N p U UnifOn X p X w p a a X w p N p a N p
58 3 ustuqtop1 U UnifOn X p X b a a X b N p a N p
59 47 57 58 vtocl U UnifOn X p X w p a a X w p N p a N p
60 37 38 39 52 59 syl31anc U UnifOn X a 𝒫 X p a w U w p a a N p
61 37 21 syl U UnifOn X a 𝒫 X p a w U w p a a N p v U a = v p
62 60 61 mpbid U UnifOn X a 𝒫 X p a w U w p a v U a = v p
63 62 r19.29an U UnifOn X a 𝒫 X p a w U w p a v U a = v p
64 34 63 impbida U UnifOn X a 𝒫 X p a v U a = v p w U w p a
65 22 64 bitrd U UnifOn X a 𝒫 X p a a N p w U w p a
66 65 ralbidva U UnifOn X a 𝒫 X p a a N p p a w U w p a
67 66 rabbidva U UnifOn X a 𝒫 X | p a a N p = a 𝒫 X | p a w U w p a
68 5 67 eqtr4d U UnifOn X J = a 𝒫 X | p a a N p
69 68 2 eqtr4di U UnifOn X J = K
70 69 fveq2d U UnifOn X nei J = nei K
71 70 fveq1d U UnifOn X nei J P = nei K P
72 71 adantr U UnifOn X P X nei J P = nei K P
73 3 ustuqtop0 U UnifOn X N : X 𝒫 𝒫 X
74 3 ustuqtop1 U UnifOn X p X a b b X a N p b N p
75 3 ustuqtop2 U UnifOn X p X fi N p N p
76 3 ustuqtop3 U UnifOn X p X a N p p a
77 3 ustuqtop4 U UnifOn X p X a N p b N p q b a N q
78 3 ustuqtop5 U UnifOn X p X X N p
79 2 73 74 75 76 77 78 neiptopnei U UnifOn X N = p X nei K p
80 79 adantr U UnifOn X P X N = p X nei K p
81 simpr U UnifOn X P X p = P p = P
82 81 sneqd U UnifOn X P X p = P p = P
83 82 fveq2d U UnifOn X P X p = P nei K p = nei K P
84 simpr U UnifOn X P X P X
85 fvexd U UnifOn X P X nei K P V
86 80 83 84 85 fvmptd U UnifOn X P X N P = nei K P
87 mptexg U UnifOn X v U v P V
88 rnexg v U v P V ran v U v P V
89 87 88 syl U UnifOn X ran v U v P V
90 89 adantr U UnifOn X P X ran v U v P V
91 nfv v P X
92 nfmpt1 _ v v U v P
93 92 nfrn _ v ran v U v P
94 93 nfel1 v ran v U v P V
95 91 94 nfan v P X ran v U v P V
96 nfv v p = P
97 95 96 nfan v P X ran v U v P V p = P
98 simpr2 P X ran v U v P V p = P v U p = P
99 98 sneqd P X ran v U v P V p = P v U p = P
100 99 imaeq2d P X ran v U v P V p = P v U v p = v P
101 100 3anassrs P X ran v U v P V p = P v U v p = v P
102 97 101 mpteq2da P X ran v U v P V p = P v U v p = v U v P
103 102 rneqd P X ran v U v P V p = P ran v U v p = ran v U v P
104 simpl P X ran v U v P V P X
105 simpr P X ran v U v P V ran v U v P V
106 3 103 104 105 fvmptd2 P X ran v U v P V N P = ran v U v P
107 84 90 106 syl2anc U UnifOn X P X N P = ran v U v P
108 72 86 107 3eqtr2d U UnifOn X P X nei J P = ran v U v P