| Step |
Hyp |
Ref |
Expression |
| 1 |
|
volf |
|
| 2 |
|
fvssunirn |
|
| 3 |
|
dmvlsiga |
|
| 4 |
2 3
|
sselii |
|
| 5 |
|
0elsiga |
|
| 6 |
4 5
|
ax-mp |
|
| 7 |
|
mblvol |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
|
ovol0 |
|
| 10 |
8 9
|
eqtri |
|
| 11 |
|
simpr |
|
| 12 |
|
nfv |
|
| 13 |
|
nfv |
|
| 14 |
|
nfdisj1 |
|
| 15 |
13 14
|
nfan |
|
| 16 |
12 15
|
nfan |
|
| 17 |
|
nfv |
|
| 18 |
16 17
|
nfan |
|
| 19 |
|
elpwi |
|
| 20 |
19
|
ad3antrrr |
|
| 21 |
|
simpr |
|
| 22 |
20 21
|
sseldd |
|
| 23 |
22
|
ex |
|
| 24 |
18 23
|
ralrimi |
|
| 25 |
|
simplrr |
|
| 26 |
|
uniiun |
|
| 27 |
26
|
fveq2i |
|
| 28 |
|
volfiniune |
|
| 29 |
27 28
|
eqtrid |
|
| 30 |
11 24 25 29
|
syl3anc |
|
| 31 |
|
bren |
|
| 32 |
|
nfv |
|
| 33 |
|
nfcv |
|
| 34 |
|
nfcv |
|
| 35 |
|
nfcv |
|
| 36 |
|
nfcv |
|
| 37 |
|
nfcv |
|
| 38 |
|
fveq2 |
|
| 39 |
|
simpl |
|
| 40 |
|
simpr |
|
| 41 |
|
eqidd |
|
| 42 |
1
|
a1i |
|
| 43 |
39 19
|
syl |
|
| 44 |
43
|
sselda |
|
| 45 |
42 44
|
ffvelcdmd |
|
| 46 |
32 33 34 35 36 37 38 39 40 41 45
|
esumf1o |
|
| 47 |
46
|
adantlr |
|
| 48 |
19
|
ad3antrrr |
|
| 49 |
|
f1of |
|
| 50 |
49
|
adantl |
|
| 51 |
50
|
ffvelcdmda |
|
| 52 |
48 51
|
sseldd |
|
| 53 |
52
|
ralrimiva |
|
| 54 |
|
simpr |
|
| 55 |
|
simplrr |
|
| 56 |
|
id |
|
| 57 |
|
simpr |
|
| 58 |
56 57
|
disjrdx |
|
| 59 |
58
|
biimpar |
|
| 60 |
54 55 59
|
syl2anc |
|
| 61 |
|
voliune |
|
| 62 |
53 60 61
|
syl2anc |
|
| 63 |
|
f1ofo |
|
| 64 |
63 57
|
iunrdx |
|
| 65 |
64 26
|
eqtr4di |
|
| 66 |
65
|
fveq2d |
|
| 67 |
66
|
adantl |
|
| 68 |
47 62 67
|
3eqtr2rd |
|
| 69 |
68
|
ex |
|
| 70 |
69
|
exlimdv |
|
| 71 |
70
|
imp |
|
| 72 |
31 71
|
sylan2b |
|
| 73 |
|
brdom2 |
|
| 74 |
73
|
biimpi |
|
| 75 |
|
isfinite2 |
|
| 76 |
|
ensymb |
|
| 77 |
|
nnenom |
|
| 78 |
|
entr |
|
| 79 |
77 78
|
mpan |
|
| 80 |
76 79
|
sylbi |
|
| 81 |
75 80
|
orim12i |
|
| 82 |
74 81
|
syl |
|
| 83 |
82
|
ad2antrl |
|
| 84 |
30 72 83
|
mpjaodan |
|
| 85 |
84
|
ex |
|
| 86 |
85
|
rgen |
|
| 87 |
|
ismeas |
|
| 88 |
4 87
|
ax-mp |
|
| 89 |
1 10 86 88
|
mpbir3an |
|