Database
REAL AND COMPLEX NUMBERS
Order sets
Infinity and the extended real number system (cont.)
xlemul1a
Next ⟩
xlemul2a
Metamath Proof Explorer
Ascii
Unicode
Theorem
xlemul1a
Description:
Extended real version of
lemul1a
.
(Contributed by
Mario Carneiro
, 20-Aug-2015)
Ref
Expression
Assertion
xlemul1a
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
≤
C
∧
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
Proof
Step
Hyp
Ref
Expression
1
0xr
⊢
0
∈
ℝ
*
2
simpr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
C
∈
ℝ
*
3
xrleloe
⊢
0
∈
ℝ
*
∧
C
∈
ℝ
*
→
0
≤
C
↔
0
<
C
∨
0
=
C
4
1
2
3
sylancr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
0
≤
C
↔
0
<
C
∨
0
=
C
5
simpllr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
C
∈
ℝ
*
6
elxr
⊢
C
∈
ℝ
*
↔
C
∈
ℝ
∨
C
=
+∞
∨
C
=
−∞
7
5
6
sylib
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
C
∈
ℝ
∨
C
=
+∞
∨
C
=
−∞
8
simplrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
9
simprll
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
∈
ℝ
10
simprlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
∈
ℝ
11
simprr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
C
∈
ℝ
12
simplrl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
0
<
C
13
lemul1
⊢
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
∧
0
<
C
→
A
≤
B
↔
A
C
≤
B
C
14
9
10
11
12
13
syl112anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
≤
B
↔
A
C
≤
B
C
15
8
14
mpbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
C
≤
B
C
16
rexmul
⊢
A
∈
ℝ
∧
C
∈
ℝ
→
A
⋅
𝑒
C
=
A
C
17
9
11
16
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
⋅
𝑒
C
=
A
C
18
rexmul
⊢
B
∈
ℝ
∧
C
∈
ℝ
→
B
⋅
𝑒
C
=
B
C
19
10
11
18
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
B
⋅
𝑒
C
=
B
C
20
15
17
19
3brtr4d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
C
∈
ℝ
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
21
20
expr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
C
∈
ℝ
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
22
simprl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℝ
23
0re
⊢
0
∈
ℝ
24
lttri4
⊢
A
∈
ℝ
∧
0
∈
ℝ
→
A
<
0
∨
A
=
0
∨
0
<
A
25
22
23
24
sylancl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
0
∨
A
=
0
∨
0
<
A
26
simplll
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
A
∈
ℝ
*
27
26
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
∈
ℝ
*
28
xmulpnf1n
⊢
A
∈
ℝ
*
∧
A
<
0
→
A
⋅
𝑒
+∞
=
−∞
29
27
28
sylan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
<
0
→
A
⋅
𝑒
+∞
=
−∞
30
simpllr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
B
∈
ℝ
*
31
30
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℝ
*
32
31
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
<
0
→
B
∈
ℝ
*
33
pnfxr
⊢
+∞
∈
ℝ
*
34
xmulcl
⊢
B
∈
ℝ
*
∧
+∞
∈
ℝ
*
→
B
⋅
𝑒
+∞
∈
ℝ
*
35
32
33
34
sylancl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
<
0
→
B
⋅
𝑒
+∞
∈
ℝ
*
36
mnfle
⊢
B
⋅
𝑒
+∞
∈
ℝ
*
→
−∞
≤
B
⋅
𝑒
+∞
37
35
36
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
<
0
→
−∞
≤
B
⋅
𝑒
+∞
38
29
37
eqbrtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
<
0
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
39
38
ex
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
0
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
40
oveq1
⊢
A
=
0
→
A
⋅
𝑒
+∞
=
0
⋅
𝑒
+∞
41
xmul02
⊢
+∞
∈
ℝ
*
→
0
⋅
𝑒
+∞
=
0
42
33
41
ax-mp
⊢
0
⋅
𝑒
+∞
=
0
43
40
42
eqtrdi
⊢
A
=
0
→
A
⋅
𝑒
+∞
=
0
44
43
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
=
0
→
A
⋅
𝑒
+∞
=
0
45
simplrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
≤
B
46
breq1
⊢
A
=
0
→
A
≤
B
↔
0
≤
B
47
45
46
syl5ibcom
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
=
0
→
0
≤
B
48
simprr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
B
∈
ℝ
49
leloe
⊢
0
∈
ℝ
∧
B
∈
ℝ
→
0
≤
B
↔
0
<
B
∨
0
=
B
50
23
48
49
sylancr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
0
≤
B
↔
0
<
B
∨
0
=
B
51
47
50
sylibd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
=
0
→
0
<
B
∨
0
=
B
52
51
imp
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
=
0
→
0
<
B
∨
0
=
B
53
pnfge
⊢
0
∈
ℝ
*
→
0
≤
+∞
54
1
53
ax-mp
⊢
0
≤
+∞
55
xmulpnf1
⊢
B
∈
ℝ
*
∧
0
<
B
→
B
⋅
𝑒
+∞
=
+∞
56
31
55
sylan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
B
⋅
𝑒
+∞
=
+∞
57
54
56
breqtrrid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
→
0
≤
B
⋅
𝑒
+∞
58
xrleid
⊢
0
∈
ℝ
*
→
0
≤
0
59
1
58
ax-mp
⊢
0
≤
0
60
59
42
breqtrri
⊢
0
≤
0
⋅
𝑒
+∞
61
simpr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
=
B
→
0
=
B
62
61
oveq1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
=
B
→
0
⋅
𝑒
+∞
=
B
⋅
𝑒
+∞
63
60
62
breqtrid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
=
B
→
0
≤
B
⋅
𝑒
+∞
64
57
63
jaodan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
B
∨
0
=
B
→
0
≤
B
⋅
𝑒
+∞
65
52
64
syldan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
=
0
→
0
≤
B
⋅
𝑒
+∞
66
44
65
eqbrtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
A
=
0
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
67
66
ex
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
=
0
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
68
pnfge
⊢
+∞
∈
ℝ
*
→
+∞
≤
+∞
69
33
68
ax-mp
⊢
+∞
≤
+∞
70
26
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
A
∈
ℝ
*
71
simprr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
0
<
A
72
xmulpnf1
⊢
A
∈
ℝ
*
∧
0
<
A
→
A
⋅
𝑒
+∞
=
+∞
73
70
71
72
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
A
⋅
𝑒
+∞
=
+∞
74
30
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
B
∈
ℝ
*
75
ltletr
⊢
0
∈
ℝ
∧
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
∧
A
≤
B
→
0
<
B
76
23
75
mp3an1
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
∧
A
≤
B
→
0
<
B
77
76
adantl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
∧
A
≤
B
→
0
<
B
78
45
77
mpan2d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
→
0
<
B
79
78
impr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
0
<
B
80
74
79
55
syl2anc
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
B
⋅
𝑒
+∞
=
+∞
81
73
80
breq12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
↔
+∞
≤
+∞
82
69
81
mpbiri
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
∧
0
<
A
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
83
82
expr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
84
39
67
83
3jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
<
0
∨
A
=
0
∨
0
<
A
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
85
25
84
mpd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
86
oveq2
⊢
C
=
+∞
→
A
⋅
𝑒
C
=
A
⋅
𝑒
+∞
87
oveq2
⊢
C
=
+∞
→
B
⋅
𝑒
C
=
B
⋅
𝑒
+∞
88
86
87
breq12d
⊢
C
=
+∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
↔
A
⋅
𝑒
+∞
≤
B
⋅
𝑒
+∞
89
85
88
syl5ibrcom
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
C
=
+∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
90
nltmnf
⊢
0
∈
ℝ
*
→
¬
0
<
−∞
91
1
90
ax-mp
⊢
¬
0
<
−∞
92
breq2
⊢
C
=
−∞
→
0
<
C
↔
0
<
−∞
93
91
92
mtbiri
⊢
C
=
−∞
→
¬
0
<
C
94
93
con2i
⊢
0
<
C
→
¬
C
=
−∞
95
94
ad2antrl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
¬
C
=
−∞
96
95
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
¬
C
=
−∞
97
96
pm2.21d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
C
=
−∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
98
21
89
97
3jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
C
∈
ℝ
∨
C
=
+∞
∨
C
=
−∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
99
7
98
mpd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
100
99
anassrs
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
∈
ℝ
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
101
xmulcl
⊢
A
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
⋅
𝑒
C
∈
ℝ
*
102
101
adantlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
⋅
𝑒
C
∈
ℝ
*
103
102
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
+∞
→
A
⋅
𝑒
C
∈
ℝ
*
104
pnfge
⊢
A
⋅
𝑒
C
∈
ℝ
*
→
A
⋅
𝑒
C
≤
+∞
105
103
104
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
+∞
→
A
⋅
𝑒
C
≤
+∞
106
oveq1
⊢
B
=
+∞
→
B
⋅
𝑒
C
=
+∞
⋅
𝑒
C
107
xmulpnf2
⊢
C
∈
ℝ
*
∧
0
<
C
→
+∞
⋅
𝑒
C
=
+∞
108
107
ad2ant2lr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
+∞
⋅
𝑒
C
=
+∞
109
106
108
sylan9eqr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
+∞
→
B
⋅
𝑒
C
=
+∞
110
105
109
breqtrrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
+∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
111
110
adantlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
=
+∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
112
simplrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
A
≤
B
113
simpr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
B
=
−∞
114
26
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
A
∈
ℝ
*
115
mnfle
⊢
A
∈
ℝ
*
→
−∞
≤
A
116
114
115
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
−∞
≤
A
117
113
116
eqbrtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
B
≤
A
118
xrletri3
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
A
=
B
↔
A
≤
B
∧
B
≤
A
119
118
ad3antrrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
A
=
B
↔
A
≤
B
∧
B
≤
A
120
112
117
119
mpbir2and
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
A
=
B
121
120
oveq1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
A
⋅
𝑒
C
=
B
⋅
𝑒
C
122
xmulcl
⊢
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
⋅
𝑒
C
∈
ℝ
*
123
122
adantll
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
⋅
𝑒
C
∈
ℝ
*
124
123
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
B
⋅
𝑒
C
∈
ℝ
*
125
xrleid
⊢
B
⋅
𝑒
C
∈
ℝ
*
→
B
⋅
𝑒
C
≤
B
⋅
𝑒
C
126
124
125
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
B
⋅
𝑒
C
≤
B
⋅
𝑒
C
127
121
126
eqbrtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
B
=
−∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
128
127
adantlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
∧
B
=
−∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
129
elxr
⊢
B
∈
ℝ
*
↔
B
∈
ℝ
∨
B
=
+∞
∨
B
=
−∞
130
30
129
sylib
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
B
∈
ℝ
∨
B
=
+∞
∨
B
=
−∞
131
130
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
→
B
∈
ℝ
∨
B
=
+∞
∨
B
=
−∞
132
100
111
128
131
mpjao3dan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
∈
ℝ
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
133
simplrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
A
≤
B
134
30
adantr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
B
∈
ℝ
*
135
pnfge
⊢
B
∈
ℝ
*
→
B
≤
+∞
136
134
135
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
B
≤
+∞
137
simpr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
A
=
+∞
138
136
137
breqtrrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
B
≤
A
139
118
ad3antrrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
A
=
B
↔
A
≤
B
∧
B
≤
A
140
133
138
139
mpbir2and
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
A
=
B
141
140
oveq1d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
A
⋅
𝑒
C
=
B
⋅
𝑒
C
142
123
125
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
⋅
𝑒
C
≤
B
⋅
𝑒
C
143
142
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
B
⋅
𝑒
C
≤
B
⋅
𝑒
C
144
141
143
eqbrtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
+∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
145
oveq1
⊢
A
=
−∞
→
A
⋅
𝑒
C
=
−∞
⋅
𝑒
C
146
xmulmnf2
⊢
C
∈
ℝ
*
∧
0
<
C
→
−∞
⋅
𝑒
C
=
−∞
147
146
ad2ant2lr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
−∞
⋅
𝑒
C
=
−∞
148
145
147
sylan9eqr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
−∞
→
A
⋅
𝑒
C
=
−∞
149
123
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
−∞
→
B
⋅
𝑒
C
∈
ℝ
*
150
mnfle
⊢
B
⋅
𝑒
C
∈
ℝ
*
→
−∞
≤
B
⋅
𝑒
C
151
149
150
syl
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
−∞
→
−∞
≤
B
⋅
𝑒
C
152
148
151
eqbrtrd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
∧
A
=
−∞
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
153
elxr
⊢
A
∈
ℝ
*
↔
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
154
26
153
sylib
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
A
∈
ℝ
∨
A
=
+∞
∨
A
=
−∞
155
132
144
152
154
mpjao3dan
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
<
C
∧
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
156
155
exp32
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
0
<
C
→
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
157
xmul01
⊢
A
∈
ℝ
*
→
A
⋅
𝑒
0
=
0
158
157
ad2antrr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
⋅
𝑒
0
=
0
159
xmul01
⊢
B
∈
ℝ
*
→
B
⋅
𝑒
0
=
0
160
159
ad2antlr
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
B
⋅
𝑒
0
=
0
161
158
160
breq12d
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
⋅
𝑒
0
≤
B
⋅
𝑒
0
↔
0
≤
0
162
59
161
mpbiri
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
A
⋅
𝑒
0
≤
B
⋅
𝑒
0
163
oveq2
⊢
0
=
C
→
A
⋅
𝑒
0
=
A
⋅
𝑒
C
164
oveq2
⊢
0
=
C
→
B
⋅
𝑒
0
=
B
⋅
𝑒
C
165
163
164
breq12d
⊢
0
=
C
→
A
⋅
𝑒
0
≤
B
⋅
𝑒
0
↔
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
166
162
165
syl5ibcom
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
0
=
C
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
167
166
a1dd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
0
=
C
→
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
168
156
167
jaod
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
0
<
C
∨
0
=
C
→
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
169
4
168
sylbid
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
→
0
≤
C
→
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
170
169
expimpd
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
→
C
∈
ℝ
*
∧
0
≤
C
→
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
171
170
3impia
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
≤
C
→
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C
172
171
imp
⊢
A
∈
ℝ
*
∧
B
∈
ℝ
*
∧
C
∈
ℝ
*
∧
0
≤
C
∧
A
≤
B
→
A
⋅
𝑒
C
≤
B
⋅
𝑒
C