Metamath Proof Explorer


Theorem xpstopnlem1

Description: The function F used in xpsval is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015)

Ref Expression
Hypotheses xpstopnlem1.f F=xX,yYx1𝑜y
xpstopnlem1.j φJTopOnX
xpstopnlem1.k φKTopOnY
Assertion xpstopnlem1 φFJ×tKHomeo𝑡J1𝑜K

Proof

Step Hyp Ref Expression
1 xpstopnlem1.f F=xX,yYx1𝑜y
2 xpstopnlem1.j φJTopOnX
3 xpstopnlem1.k φKTopOnY
4 txtopon JTopOnXKTopOnYJ×tKTopOnX×Y
5 2 3 4 syl2anc φJ×tKTopOnX×Y
6 eqid 𝑡J=𝑡J
7 0ex V
8 7 a1i φV
9 6 8 2 pt1hmeo φzXzJHomeo𝑡J
10 hmeocn zXzJHomeo𝑡JzXzJCn𝑡J
11 cntop2 zXzJCn𝑡J𝑡JTop
12 9 10 11 3syl φ𝑡JTop
13 toptopon2 𝑡JTop𝑡JTopOn𝑡J
14 12 13 sylib φ𝑡JTopOn𝑡J
15 eqid 𝑡1𝑜K=𝑡1𝑜K
16 1on 1𝑜On
17 16 a1i φ1𝑜On
18 15 17 3 pt1hmeo φzY1𝑜zKHomeo𝑡1𝑜K
19 hmeocn zY1𝑜zKHomeo𝑡1𝑜KzY1𝑜zKCn𝑡1𝑜K
20 cntop2 zY1𝑜zKCn𝑡1𝑜K𝑡1𝑜KTop
21 18 19 20 3syl φ𝑡1𝑜KTop
22 toptopon2 𝑡1𝑜KTop𝑡1𝑜KTopOn𝑡1𝑜K
23 21 22 sylib φ𝑡1𝑜KTopOn𝑡1𝑜K
24 txtopon 𝑡JTopOn𝑡J𝑡1𝑜KTopOn𝑡1𝑜K𝑡J×t𝑡1𝑜KTopOn𝑡J×𝑡1𝑜K
25 14 23 24 syl2anc φ𝑡J×t𝑡1𝑜KTopOn𝑡J×𝑡1𝑜K
26 opeq2 z=xz=x
27 26 sneqd z=xz=x
28 eqid zXz=zXz
29 snex xV
30 27 28 29 fvmpt xXzXzx=x
31 opeq2 z=y1𝑜z=1𝑜y
32 31 sneqd z=y1𝑜z=1𝑜y
33 eqid zY1𝑜z=zY1𝑜z
34 snex 1𝑜yV
35 32 33 34 fvmpt yYzY1𝑜zy=1𝑜y
36 opeq12 zXzx=xzY1𝑜zy=1𝑜yzXzxzY1𝑜zy=x1𝑜y
37 30 35 36 syl2an xXyYzXzxzY1𝑜zy=x1𝑜y
38 37 mpoeq3ia xX,yYzXzxzY1𝑜zy=xX,yYx1𝑜y
39 toponuni JTopOnXX=J
40 2 39 syl φX=J
41 toponuni KTopOnYY=K
42 3 41 syl φY=K
43 mpoeq12 X=JY=KxX,yYzXzxzY1𝑜zy=xJ,yKzXzxzY1𝑜zy
44 40 42 43 syl2anc φxX,yYzXzxzY1𝑜zy=xJ,yKzXzxzY1𝑜zy
45 38 44 eqtr3id φxX,yYx1𝑜y=xJ,yKzXzxzY1𝑜zy
46 eqid J=J
47 eqid K=K
48 46 47 9 18 txhmeo φxJ,yKzXzxzY1𝑜zyJ×tKHomeo𝑡J×t𝑡1𝑜K
49 45 48 eqeltrd φxX,yYx1𝑜yJ×tKHomeo𝑡J×t𝑡1𝑜K
50 hmeocn xX,yYx1𝑜yJ×tKHomeo𝑡J×t𝑡1𝑜KxX,yYx1𝑜yJ×tKCn𝑡J×t𝑡1𝑜K
51 49 50 syl φxX,yYx1𝑜yJ×tKCn𝑡J×t𝑡1𝑜K
52 cnf2 J×tKTopOnX×Y𝑡J×t𝑡1𝑜KTopOn𝑡J×𝑡1𝑜KxX,yYx1𝑜yJ×tKCn𝑡J×t𝑡1𝑜KxX,yYx1𝑜y:X×Y𝑡J×𝑡1𝑜K
53 5 25 51 52 syl3anc φxX,yYx1𝑜y:X×Y𝑡J×𝑡1𝑜K
54 eqid xX,yYx1𝑜y=xX,yYx1𝑜y
55 54 fmpo xXyYx1𝑜y𝑡J×𝑡1𝑜KxX,yYx1𝑜y:X×Y𝑡J×𝑡1𝑜K
56 53 55 sylibr φxXyYx1𝑜y𝑡J×𝑡1𝑜K
57 56 r19.21bi φxXyYx1𝑜y𝑡J×𝑡1𝑜K
58 57 r19.21bi φxXyYx1𝑜y𝑡J×𝑡1𝑜K
59 58 anasss φxXyYx1𝑜y𝑡J×𝑡1𝑜K
60 eqidd φxX,yYx1𝑜y=xX,yYx1𝑜y
61 vex xV
62 vex yV
63 61 62 op1std z=xy1stz=x
64 61 62 op2ndd z=xy2ndz=y
65 63 64 uneq12d z=xy1stz2ndz=xy
66 65 mpompt z𝑡J×𝑡1𝑜K1stz2ndz=x𝑡J,y𝑡1𝑜Kxy
67 66 eqcomi x𝑡J,y𝑡1𝑜Kxy=z𝑡J×𝑡1𝑜K1stz2ndz
68 67 a1i φx𝑡J,y𝑡1𝑜Kxy=z𝑡J×𝑡1𝑜K1stz2ndz
69 29 34 op1std z=x1𝑜y1stz=x
70 29 34 op2ndd z=x1𝑜y2ndz=1𝑜y
71 69 70 uneq12d z=x1𝑜y1stz2ndz=x1𝑜y
72 df-pr x1𝑜y=x1𝑜y
73 71 72 eqtr4di z=x1𝑜y1stz2ndz=x1𝑜y
74 59 60 68 73 fmpoco φx𝑡J,y𝑡1𝑜KxyxX,yYx1𝑜y=xX,yYx1𝑜y
75 1 74 eqtr4id φF=x𝑡J,y𝑡1𝑜KxyxX,yYx1𝑜y
76 eqid 𝑡J1𝑜K=𝑡J1𝑜K
77 eqid 𝑡J1𝑜K1𝑜=𝑡J1𝑜K1𝑜
78 eqid 𝑡J1𝑜K=𝑡J1𝑜K
79 eqid 𝑡J1𝑜K=𝑡J1𝑜K
80 eqid 𝑡J1𝑜K1𝑜=𝑡J1𝑜K1𝑜
81 eqid x𝑡J1𝑜K,y𝑡J1𝑜K1𝑜xy=x𝑡J1𝑜K,y𝑡J1𝑜K1𝑜xy
82 2on 2𝑜On
83 82 a1i φ2𝑜On
84 topontop JTopOnXJTop
85 2 84 syl φJTop
86 topontop KTopOnYKTop
87 3 86 syl φKTop
88 xpscf J1𝑜K:2𝑜TopJTopKTop
89 85 87 88 sylanbrc φJ1𝑜K:2𝑜Top
90 df2o3 2𝑜=1𝑜
91 df-pr 1𝑜=1𝑜
92 90 91 eqtri 2𝑜=1𝑜
93 92 a1i φ2𝑜=1𝑜
94 1n0 1𝑜
95 94 necomi 1𝑜
96 disjsn2 1𝑜1𝑜=
97 95 96 mp1i φ1𝑜=
98 76 77 78 79 80 81 83 89 93 97 ptunhmeo φx𝑡J1𝑜K,y𝑡J1𝑜K1𝑜xy𝑡J1𝑜K×t𝑡J1𝑜K1𝑜Homeo𝑡J1𝑜K
99 fnpr2o JTopOnXKTopOnYJ1𝑜KFn2𝑜
100 2 3 99 syl2anc φJ1𝑜KFn2𝑜
101 7 prid1 1𝑜
102 101 90 eleqtrri 2𝑜
103 fnressn J1𝑜KFn2𝑜2𝑜J1𝑜K=J1𝑜K
104 100 102 103 sylancl φJ1𝑜K=J1𝑜K
105 fvpr0o JTopOnXJ1𝑜K=J
106 2 105 syl φJ1𝑜K=J
107 106 opeq2d φJ1𝑜K=J
108 107 sneqd φJ1𝑜K=J
109 104 108 eqtrd φJ1𝑜K=J
110 109 fveq2d φ𝑡J1𝑜K=𝑡J
111 110 unieqd φ𝑡J1𝑜K=𝑡J
112 1oex 1𝑜V
113 112 prid2 1𝑜1𝑜
114 113 90 eleqtrri 1𝑜2𝑜
115 fnressn J1𝑜KFn2𝑜1𝑜2𝑜J1𝑜K1𝑜=1𝑜J1𝑜K1𝑜
116 100 114 115 sylancl φJ1𝑜K1𝑜=1𝑜J1𝑜K1𝑜
117 fvpr1o KTopOnYJ1𝑜K1𝑜=K
118 3 117 syl φJ1𝑜K1𝑜=K
119 118 opeq2d φ1𝑜J1𝑜K1𝑜=1𝑜K
120 119 sneqd φ1𝑜J1𝑜K1𝑜=1𝑜K
121 116 120 eqtrd φJ1𝑜K1𝑜=1𝑜K
122 121 fveq2d φ𝑡J1𝑜K1𝑜=𝑡1𝑜K
123 122 unieqd φ𝑡J1𝑜K1𝑜=𝑡1𝑜K
124 eqidd φxy=xy
125 111 123 124 mpoeq123dv φx𝑡J1𝑜K,y𝑡J1𝑜K1𝑜xy=x𝑡J,y𝑡1𝑜Kxy
126 110 122 oveq12d φ𝑡J1𝑜K×t𝑡J1𝑜K1𝑜=𝑡J×t𝑡1𝑜K
127 126 oveq1d φ𝑡J1𝑜K×t𝑡J1𝑜K1𝑜Homeo𝑡J1𝑜K=𝑡J×t𝑡1𝑜KHomeo𝑡J1𝑜K
128 98 125 127 3eltr3d φx𝑡J,y𝑡1𝑜Kxy𝑡J×t𝑡1𝑜KHomeo𝑡J1𝑜K
129 hmeoco xX,yYx1𝑜yJ×tKHomeo𝑡J×t𝑡1𝑜Kx𝑡J,y𝑡1𝑜Kxy𝑡J×t𝑡1𝑜KHomeo𝑡J1𝑜Kx𝑡J,y𝑡1𝑜KxyxX,yYx1𝑜yJ×tKHomeo𝑡J1𝑜K
130 49 128 129 syl2anc φx𝑡J,y𝑡1𝑜KxyxX,yYx1𝑜yJ×tKHomeo𝑡J1𝑜K
131 75 130 eqeltrd φFJ×tKHomeo𝑡J1𝑜K