Step |
Hyp |
Ref |
Expression |
1 |
|
rpvmasum.z |
⊢ 𝑍 = ( ℤ/nℤ ‘ 𝑁 ) |
2 |
|
rpvmasum.l |
⊢ 𝐿 = ( ℤRHom ‘ 𝑍 ) |
3 |
|
rpvmasum.a |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
rpvmasum2.g |
⊢ 𝐺 = ( DChr ‘ 𝑁 ) |
5 |
|
rpvmasum2.d |
⊢ 𝐷 = ( Base ‘ 𝐺 ) |
6 |
|
rpvmasum2.1 |
⊢ 1 = ( 0g ‘ 𝐺 ) |
7 |
|
rpvmasum2.w |
⊢ 𝑊 = { 𝑦 ∈ ( 𝐷 ∖ { 1 } ) ∣ Σ 𝑚 ∈ ℕ ( ( 𝑦 ‘ ( 𝐿 ‘ 𝑚 ) ) / 𝑚 ) = 0 } |
8 |
|
dchrisum0.b |
⊢ ( 𝜑 → 𝑋 ∈ 𝑊 ) |
9 |
|
dchrisum0lem1.f |
⊢ 𝐹 = ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) |
10 |
|
dchrisum0.c |
⊢ ( 𝜑 → 𝐶 ∈ ( 0 [,) +∞ ) ) |
11 |
|
dchrisum0.s |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) ⇝ 𝑆 ) |
12 |
|
dchrisum0.1 |
⊢ ( 𝜑 → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑦 ) ) ) |
13 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ∈ Fin ) |
14 |
|
ssun2 |
⊢ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ⊆ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∪ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
16 |
15
|
rprege0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
17 |
|
flge0nn0 |
⊢ ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
18 |
16 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ0 ) |
19 |
|
nn0p1nn |
⊢ ( ( ⌊ ‘ 𝑥 ) ∈ ℕ0 → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
20 |
18 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
21 |
20
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ℕ ) |
22 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
23 |
21 22
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ) |
24 |
|
dchrisum0lem1a |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∧ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) ) |
25 |
24
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) |
26 |
|
fzsplit2 |
⊢ ( ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ∈ ( ℤ≥ ‘ 1 ) ∧ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) = ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∪ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) ) |
27 |
23 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) = ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∪ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) ) |
28 |
14 27
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ⊆ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
29 |
28
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
30 |
7
|
ssrab3 |
⊢ 𝑊 ⊆ ( 𝐷 ∖ { 1 } ) |
31 |
30 8
|
sselid |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐷 ∖ { 1 } ) ) |
32 |
31
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐷 ) |
33 |
32
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → 𝑋 ∈ 𝐷 ) |
34 |
|
elfzelz |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) → 𝑚 ∈ ℤ ) |
35 |
34
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → 𝑚 ∈ ℤ ) |
36 |
4 1 5 2 33 35
|
dchrzrhcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
37 |
|
elfznn |
⊢ ( 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) → 𝑚 ∈ ℕ ) |
38 |
37
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → 𝑚 ∈ ℕ ) |
39 |
38
|
nnrpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → 𝑚 ∈ ℝ+ ) |
40 |
39
|
rpsqrtcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → ( √ ‘ 𝑚 ) ∈ ℝ+ ) |
41 |
40
|
rpcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → ( √ ‘ 𝑚 ) ∈ ℂ ) |
42 |
40
|
rpne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → ( √ ‘ 𝑚 ) ≠ 0 ) |
43 |
36 41 42
|
divcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
44 |
29 43
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
45 |
13 44
|
fsumcl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
46 |
45
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ∈ ℝ ) |
47 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
48 |
32
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑋 ∈ 𝐷 ) |
49 |
|
nnz |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℤ ) |
50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℤ ) |
51 |
4 1 5 2 48 50
|
dchrzrhcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ∈ ℂ ) |
52 |
|
nnrp |
⊢ ( 𝑚 ∈ ℕ → 𝑚 ∈ ℝ+ ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 𝑚 ∈ ℝ+ ) |
54 |
53
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( √ ‘ 𝑚 ) ∈ ℝ+ ) |
55 |
54
|
rpcnd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( √ ‘ 𝑚 ) ∈ ℂ ) |
56 |
54
|
rpne0d |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( √ ‘ 𝑚 ) ≠ 0 ) |
57 |
51 55 56
|
divcld |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
58 |
|
2fveq3 |
⊢ ( 𝑎 = 𝑚 → ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) = ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) ) |
59 |
|
fveq2 |
⊢ ( 𝑎 = 𝑚 → ( √ ‘ 𝑎 ) = ( √ ‘ 𝑚 ) ) |
60 |
58 59
|
oveq12d |
⊢ ( 𝑎 = 𝑚 → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
61 |
60
|
cbvmptv |
⊢ ( 𝑎 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
62 |
9 61
|
eqtri |
⊢ 𝐹 = ( 𝑚 ∈ ℕ ↦ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
63 |
57 62
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℂ ) |
64 |
63
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐹 ‘ 𝑚 ) ∈ ℂ ) |
65 |
22 47 64
|
serf |
⊢ ( 𝜑 → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → seq 1 ( + , 𝐹 ) : ℕ ⟶ ℂ ) |
67 |
15
|
rpregt0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) |
69 |
68
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ ) |
70 |
|
1red |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ∈ ℝ ) |
71 |
|
elfznn |
⊢ ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) → 𝑑 ∈ ℕ ) |
72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℕ ) |
73 |
72
|
nnred |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℝ ) |
74 |
72
|
nnge1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ 𝑑 ) |
75 |
15
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ ) |
76 |
|
fznnfl |
⊢ ( 𝑥 ∈ ℝ → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝑥 ) ) ) |
77 |
75 76
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ↔ ( 𝑑 ∈ ℕ ∧ 𝑑 ≤ 𝑥 ) ) ) |
78 |
77
|
simplbda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ≤ 𝑥 ) |
79 |
70 73 69 74 78
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ 𝑥 ) |
80 |
|
flge1nn |
⊢ ( ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
81 |
69 79 80
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℕ ) |
82 |
|
eluznn |
⊢ ( ( ( ⌊ ‘ 𝑥 ) ∈ ℕ ∧ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ( ℤ≥ ‘ ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ℕ ) |
83 |
81 25 82
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ℕ ) |
84 |
66 83
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ∈ ℂ ) |
85 |
|
climcl |
⊢ ( seq 1 ( + , 𝐹 ) ⇝ 𝑆 → 𝑆 ∈ ℂ ) |
86 |
11 85
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
87 |
86
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑆 ∈ ℂ ) |
88 |
84 87
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ∈ ℂ ) |
89 |
88
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) ∈ ℝ ) |
90 |
66 81
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ∈ ℂ ) |
91 |
87 90
|
subcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ∈ ℂ ) |
92 |
91
|
abscld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ∈ ℝ ) |
93 |
89 92
|
readdcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) + ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) ∈ ℝ ) |
94 |
|
2re |
⊢ 2 ∈ ℝ |
95 |
|
elrege0 |
⊢ ( 𝐶 ∈ ( 0 [,) +∞ ) ↔ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
96 |
10 95
|
sylib |
⊢ ( 𝜑 → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
97 |
96
|
simpld |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
98 |
|
remulcl |
⊢ ( ( 2 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( 2 · 𝐶 ) ∈ ℝ ) |
99 |
94 97 98
|
sylancr |
⊢ ( 𝜑 → ( 2 · 𝐶 ) ∈ ℝ ) |
100 |
99
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 2 · 𝐶 ) ∈ ℝ ) |
101 |
15
|
rpsqrtcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
102 |
100 101
|
rerpdivcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( 2 · 𝐶 ) / ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
103 |
102
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 2 · 𝐶 ) / ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
104 |
|
ssun1 |
⊢ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∪ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
105 |
104 27
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ 𝑥 ) ) ⊆ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
106 |
105
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
107 |
|
ovex |
⊢ ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑎 ) ) / ( √ ‘ 𝑎 ) ) ∈ V |
108 |
60 9 107
|
fvmpt3i |
⊢ ( 𝑚 ∈ ℕ → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
109 |
38 108
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
110 |
106 109
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐹 ‘ 𝑚 ) = ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
111 |
81 22
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ 𝑥 ) ∈ ( ℤ≥ ‘ 1 ) ) |
112 |
106 43
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) ∧ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
113 |
110 111 112
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
114 |
113 90
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ∈ ℂ ) |
115 |
114 45
|
pncan2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) = Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) |
116 |
|
reflcl |
⊢ ( 𝑥 ∈ ℝ → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
117 |
69 116
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ 𝑥 ) ∈ ℝ ) |
118 |
117
|
ltp1d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ 𝑥 ) < ( ( ⌊ ‘ 𝑥 ) + 1 ) ) |
119 |
|
fzdisj |
⊢ ( ( ⌊ ‘ 𝑥 ) < ( ( ⌊ ‘ 𝑥 ) + 1 ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) = ∅ ) |
120 |
118 119
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 1 ... ( ⌊ ‘ 𝑥 ) ) ∩ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) = ∅ ) |
121 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ∈ Fin ) |
122 |
120 27 121 43
|
fsumsplit |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) = ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ) |
123 |
83 22
|
eleqtrdi |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ( ℤ≥ ‘ 1 ) ) |
124 |
109 123 43
|
fsumser |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
125 |
122 124
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
126 |
125 113
|
oveq12d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) + Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) − Σ 𝑚 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) |
127 |
115 126
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) = ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) |
128 |
127
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) |
129 |
84 90 87
|
abs3difd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ≤ ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) + ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) ) |
130 |
128 129
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ≤ ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) + ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) ) |
131 |
97
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℝ ) |
132 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ℝ+ ) |
133 |
132
|
rpsqrtcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑥 ) ∈ ℝ+ ) |
134 |
131 133
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / ( √ ‘ 𝑥 ) ) ∈ ℝ ) |
135 |
|
2z |
⊢ 2 ∈ ℤ |
136 |
|
rpexpcl |
⊢ ( ( 𝑥 ∈ ℝ+ ∧ 2 ∈ ℤ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
137 |
15 135 136
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
138 |
137
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ↑ 2 ) ∈ ℝ+ ) |
139 |
72
|
nnrpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑑 ∈ ℝ+ ) |
140 |
138 139
|
rpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ℝ+ ) |
141 |
140
|
rpsqrtcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ℝ+ ) |
142 |
131 141
|
rerpdivcld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ∈ ℝ ) |
143 |
|
2fveq3 |
⊢ ( 𝑦 = ( ( 𝑥 ↑ 2 ) / 𝑑 ) → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
144 |
143
|
fvoveq1d |
⊢ ( 𝑦 = ( ( 𝑥 ↑ 2 ) / 𝑑 ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) ) |
145 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝑥 ↑ 2 ) / 𝑑 ) → ( √ ‘ 𝑦 ) = ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) |
146 |
145
|
oveq2d |
⊢ ( 𝑦 = ( ( 𝑥 ↑ 2 ) / 𝑑 ) → ( 𝐶 / ( √ ‘ 𝑦 ) ) = ( 𝐶 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
147 |
144 146
|
breq12d |
⊢ ( 𝑦 = ( ( 𝑥 ↑ 2 ) / 𝑑 ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑦 ) ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) ) |
148 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ∀ 𝑦 ∈ ( 1 [,) +∞ ) ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑦 ) ) ) |
149 |
137
|
rpred |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( 𝑥 ↑ 2 ) ∈ ℝ ) |
150 |
|
nndivre |
⊢ ( ( ( 𝑥 ↑ 2 ) ∈ ℝ ∧ 𝑑 ∈ ℕ ) → ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ℝ ) |
151 |
149 71 150
|
syl2an |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ℝ ) |
152 |
24
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) |
153 |
70 69 151 79 152
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 1 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) |
154 |
|
1re |
⊢ 1 ∈ ℝ |
155 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ( 1 [,) +∞ ) ↔ ( ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ℝ ∧ 1 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
156 |
154 155
|
ax-mp |
⊢ ( ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ( 1 [,) +∞ ) ↔ ( ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ℝ ∧ 1 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) |
157 |
151 153 156
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ( 1 [,) +∞ ) ) |
158 |
147 148 157
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
159 |
133
|
rpregt0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( √ ‘ 𝑥 ) ) ) |
160 |
141
|
rpregt0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ℝ ∧ 0 < ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
161 |
96
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) |
162 |
132
|
rprege0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ) |
163 |
140
|
rprege0d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) |
164 |
|
sqrtle |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 0 ≤ 𝑥 ) ∧ ( ( ( 𝑥 ↑ 2 ) / 𝑑 ) ∈ ℝ ∧ 0 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) → ( 𝑥 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ↔ ( √ ‘ 𝑥 ) ≤ ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
165 |
162 163 164
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝑥 ≤ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ↔ ( √ ‘ 𝑥 ) ≤ ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ) |
166 |
152 165
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( √ ‘ 𝑥 ) ≤ ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) |
167 |
|
lediv2a |
⊢ ( ( ( ( ( √ ‘ 𝑥 ) ∈ ℝ ∧ 0 < ( √ ‘ 𝑥 ) ) ∧ ( ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ∈ ℝ ∧ 0 < ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ∧ ( 𝐶 ∈ ℝ ∧ 0 ≤ 𝐶 ) ) ∧ ( √ ‘ 𝑥 ) ≤ ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) → ( 𝐶 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ≤ ( 𝐶 / ( √ ‘ 𝑥 ) ) ) |
168 |
159 160 161 166 167
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / ( √ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ≤ ( 𝐶 / ( √ ‘ 𝑥 ) ) ) |
169 |
89 142 134 158 168
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑥 ) ) ) |
170 |
87 90
|
abssubd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑆 ) ) ) |
171 |
|
2fveq3 |
⊢ ( 𝑦 = 𝑥 → ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) = ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) |
172 |
171
|
fvoveq1d |
⊢ ( 𝑦 = 𝑥 → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) = ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑆 ) ) ) |
173 |
|
fveq2 |
⊢ ( 𝑦 = 𝑥 → ( √ ‘ 𝑦 ) = ( √ ‘ 𝑥 ) ) |
174 |
173
|
oveq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝐶 / ( √ ‘ 𝑦 ) ) = ( 𝐶 / ( √ ‘ 𝑥 ) ) ) |
175 |
172 174
|
breq12d |
⊢ ( 𝑦 = 𝑥 → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑦 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑦 ) ) ↔ ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑥 ) ) ) ) |
176 |
|
elicopnf |
⊢ ( 1 ∈ ℝ → ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) ) |
177 |
154 176
|
ax-mp |
⊢ ( 𝑥 ∈ ( 1 [,) +∞ ) ↔ ( 𝑥 ∈ ℝ ∧ 1 ≤ 𝑥 ) ) |
178 |
69 79 177
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝑥 ∈ ( 1 [,) +∞ ) ) |
179 |
175 148 178
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) − 𝑆 ) ) ≤ ( 𝐶 / ( √ ‘ 𝑥 ) ) ) |
180 |
170 179
|
eqbrtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ≤ ( 𝐶 / ( √ ‘ 𝑥 ) ) ) |
181 |
89 92 134 134 169 180
|
le2addd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) + ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) ≤ ( ( 𝐶 / ( √ ‘ 𝑥 ) ) + ( 𝐶 / ( √ ‘ 𝑥 ) ) ) ) |
182 |
|
2cnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 2 ∈ ℂ ) |
183 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐶 ∈ ℝ ) |
184 |
183
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → 𝐶 ∈ ℂ ) |
185 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → 𝐶 ∈ ℂ ) |
186 |
101
|
rpcnne0d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ ( √ ‘ 𝑥 ) ≠ 0 ) ) |
187 |
186
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ ( √ ‘ 𝑥 ) ≠ 0 ) ) |
188 |
|
divass |
⊢ ( ( 2 ∈ ℂ ∧ 𝐶 ∈ ℂ ∧ ( ( √ ‘ 𝑥 ) ∈ ℂ ∧ ( √ ‘ 𝑥 ) ≠ 0 ) ) → ( ( 2 · 𝐶 ) / ( √ ‘ 𝑥 ) ) = ( 2 · ( 𝐶 / ( √ ‘ 𝑥 ) ) ) ) |
189 |
182 185 187 188
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 2 · 𝐶 ) / ( √ ‘ 𝑥 ) ) = ( 2 · ( 𝐶 / ( √ ‘ 𝑥 ) ) ) ) |
190 |
134
|
recnd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 𝐶 / ( √ ‘ 𝑥 ) ) ∈ ℂ ) |
191 |
190
|
2timesd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( 2 · ( 𝐶 / ( √ ‘ 𝑥 ) ) ) = ( ( 𝐶 / ( √ ‘ 𝑥 ) ) + ( 𝐶 / ( √ ‘ 𝑥 ) ) ) ) |
192 |
189 191
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( 2 · 𝐶 ) / ( √ ‘ 𝑥 ) ) = ( ( 𝐶 / ( √ ‘ 𝑥 ) ) + ( 𝐶 / ( √ ‘ 𝑥 ) ) ) ) |
193 |
181 192
|
breqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( ( abs ‘ ( ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) − 𝑆 ) ) + ( abs ‘ ( 𝑆 − ( seq 1 ( + , 𝐹 ) ‘ ( ⌊ ‘ 𝑥 ) ) ) ) ) ≤ ( ( 2 · 𝐶 ) / ( √ ‘ 𝑥 ) ) ) |
194 |
46 93 103 130 193
|
letrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑑 ∈ ( 1 ... ( ⌊ ‘ 𝑥 ) ) ) → ( abs ‘ Σ 𝑚 ∈ ( ( ( ⌊ ‘ 𝑥 ) + 1 ) ... ( ⌊ ‘ ( ( 𝑥 ↑ 2 ) / 𝑑 ) ) ) ( ( 𝑋 ‘ ( 𝐿 ‘ 𝑚 ) ) / ( √ ‘ 𝑚 ) ) ) ≤ ( ( 2 · 𝐶 ) / ( √ ‘ 𝑥 ) ) ) |