| Step | Hyp | Ref | Expression | 
						
							| 1 |  | frgpcyg.g | ⊢ 𝐺  =  ( freeGrp ‘ 𝐼 ) | 
						
							| 2 |  | brdom2 | ⊢ ( 𝐼  ≼  1o  ↔  ( 𝐼  ≺  1o  ∨  𝐼  ≈  1o ) ) | 
						
							| 3 |  | sdom1 | ⊢ ( 𝐼  ≺  1o  ↔  𝐼  =  ∅ ) | 
						
							| 4 |  | fveq2 | ⊢ ( 𝐼  =  ∅  →  ( freeGrp ‘ 𝐼 )  =  ( freeGrp ‘ ∅ ) ) | 
						
							| 5 | 1 4 | eqtrid | ⊢ ( 𝐼  =  ∅  →  𝐺  =  ( freeGrp ‘ ∅ ) ) | 
						
							| 6 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 7 |  | eqid | ⊢ ( freeGrp ‘ ∅ )  =  ( freeGrp ‘ ∅ ) | 
						
							| 8 | 7 | frgpgrp | ⊢ ( ∅  ∈  V  →  ( freeGrp ‘ ∅ )  ∈  Grp ) | 
						
							| 9 | 6 8 | ax-mp | ⊢ ( freeGrp ‘ ∅ )  ∈  Grp | 
						
							| 10 |  | eqid | ⊢ ( Base ‘ ( freeGrp ‘ ∅ ) )  =  ( Base ‘ ( freeGrp ‘ ∅ ) ) | 
						
							| 11 | 7 10 | 0frgp | ⊢ ( Base ‘ ( freeGrp ‘ ∅ ) )  ≈  1o | 
						
							| 12 | 10 | 0cyg | ⊢ ( ( ( freeGrp ‘ ∅ )  ∈  Grp  ∧  ( Base ‘ ( freeGrp ‘ ∅ ) )  ≈  1o )  →  ( freeGrp ‘ ∅ )  ∈  CycGrp ) | 
						
							| 13 | 9 11 12 | mp2an | ⊢ ( freeGrp ‘ ∅ )  ∈  CycGrp | 
						
							| 14 | 5 13 | eqeltrdi | ⊢ ( 𝐼  =  ∅  →  𝐺  ∈  CycGrp ) | 
						
							| 15 | 3 14 | sylbi | ⊢ ( 𝐼  ≺  1o  →  𝐺  ∈  CycGrp ) | 
						
							| 16 |  | eqid | ⊢ ( Base ‘ 𝐺 )  =  ( Base ‘ 𝐺 ) | 
						
							| 17 |  | eqid | ⊢ ( .g ‘ 𝐺 )  =  ( .g ‘ 𝐺 ) | 
						
							| 18 |  | relen | ⊢ Rel   ≈ | 
						
							| 19 | 18 | brrelex1i | ⊢ ( 𝐼  ≈  1o  →  𝐼  ∈  V ) | 
						
							| 20 | 1 | frgpgrp | ⊢ ( 𝐼  ∈  V  →  𝐺  ∈  Grp ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝐼  ≈  1o  →  𝐺  ∈  Grp ) | 
						
							| 22 |  | eqid | ⊢ (  ~FG  ‘ 𝐼 )  =  (  ~FG  ‘ 𝐼 ) | 
						
							| 23 |  | eqid | ⊢ ( varFGrp ‘ 𝐼 )  =  ( varFGrp ‘ 𝐼 ) | 
						
							| 24 | 22 23 1 16 | vrgpf | ⊢ ( 𝐼  ∈  V  →  ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 25 | 19 24 | syl | ⊢ ( 𝐼  ≈  1o  →  ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 26 |  | en1uniel | ⊢ ( 𝐼  ≈  1o  →  ∪  𝐼  ∈  𝐼 ) | 
						
							| 27 | 25 26 | ffvelcdmd | ⊢ ( 𝐼  ≈  1o  →  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 28 |  | zringgrp | ⊢ ℤring  ∈  Grp | 
						
							| 29 | 19 | uniexd | ⊢ ( 𝐼  ≈  1o  →  ∪  𝐼  ∈  V ) | 
						
							| 30 |  | 1zzd | ⊢ ( 𝐼  ≈  1o  →  1  ∈  ℤ ) | 
						
							| 31 | 29 30 | fsnd | ⊢ ( 𝐼  ≈  1o  →  { 〈 ∪  𝐼 ,  1 〉 } : { ∪  𝐼 } ⟶ ℤ ) | 
						
							| 32 |  | en1b | ⊢ ( 𝐼  ≈  1o  ↔  𝐼  =  { ∪  𝐼 } ) | 
						
							| 33 | 32 | biimpi | ⊢ ( 𝐼  ≈  1o  →  𝐼  =  { ∪  𝐼 } ) | 
						
							| 34 | 33 | feq2d | ⊢ ( 𝐼  ≈  1o  →  ( { 〈 ∪  𝐼 ,  1 〉 } : 𝐼 ⟶ ℤ  ↔  { 〈 ∪  𝐼 ,  1 〉 } : { ∪  𝐼 } ⟶ ℤ ) ) | 
						
							| 35 | 31 34 | mpbird | ⊢ ( 𝐼  ≈  1o  →  { 〈 ∪  𝐼 ,  1 〉 } : 𝐼 ⟶ ℤ ) | 
						
							| 36 |  | zringbas | ⊢ ℤ  =  ( Base ‘ ℤring ) | 
						
							| 37 | 1 36 23 | frgpup3 | ⊢ ( ( ℤring  ∈  Grp  ∧  𝐼  ∈  V  ∧  { 〈 ∪  𝐼 ,  1 〉 } : 𝐼 ⟶ ℤ )  →  ∃! 𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 } ) | 
						
							| 38 | 28 19 35 37 | mp3an2i | ⊢ ( 𝐼  ≈  1o  →  ∃! 𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 } ) | 
						
							| 39 | 38 | adantr | ⊢ ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ∃! 𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 } ) | 
						
							| 40 |  | reurex | ⊢ ( ∃! 𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 }  →  ∃ 𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 } ) | 
						
							| 41 | 39 40 | syl | ⊢ ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ∃ 𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 } ) | 
						
							| 42 |  | fveq1 | ⊢ ( ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 }  →  ( ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) ) ‘ ∪  𝐼 )  =  ( { 〈 ∪  𝐼 ,  1 〉 } ‘ ∪  𝐼 ) ) | 
						
							| 43 | 25 26 | fvco3d | ⊢ ( 𝐼  ≈  1o  →  ( ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) ) ‘ ∪  𝐼 )  =  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 44 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 45 |  | fvsng | ⊢ ( ( ∪  𝐼  ∈  V  ∧  1  ∈  ℤ )  →  ( { 〈 ∪  𝐼 ,  1 〉 } ‘ ∪  𝐼 )  =  1 ) | 
						
							| 46 | 29 44 45 | sylancl | ⊢ ( 𝐼  ≈  1o  →  ( { 〈 ∪  𝐼 ,  1 〉 } ‘ ∪  𝐼 )  =  1 ) | 
						
							| 47 | 43 46 | eqeq12d | ⊢ ( 𝐼  ≈  1o  →  ( ( ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) ) ‘ ∪  𝐼 )  =  ( { 〈 ∪  𝐼 ,  1 〉 } ‘ ∪  𝐼 )  ↔  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) ) | 
						
							| 48 | 42 47 | imbitrid | ⊢ ( 𝐼  ≈  1o  →  ( ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 }  →  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) ) | 
						
							| 49 | 48 | ad2antrr | ⊢ ( ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑓  ∈  ( 𝐺  GrpHom  ℤring ) )  →  ( ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 }  →  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) ) | 
						
							| 50 | 16 36 | ghmf | ⊢ ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  →  𝑓 : ( Base ‘ 𝐺 ) ⟶ ℤ ) | 
						
							| 51 | 50 | ad2antrl | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  𝑓 : ( Base ‘ 𝐺 ) ⟶ ℤ ) | 
						
							| 52 | 51 | ffvelcdmda | ⊢ ( ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 53 | 52 | an32s | ⊢ ( ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑓 ‘ 𝑥 )  ∈  ℤ ) | 
						
							| 54 |  | mptresid | ⊢ (  I   ↾  ( Base ‘ 𝐺 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  𝑥 ) | 
						
							| 55 | 1 16 23 | frgpup3 | ⊢ ( ( 𝐺  ∈  Grp  ∧  𝐼  ∈  V  ∧  ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) )  →  ∃! 𝑔  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 56 | 21 19 25 55 | syl3anc | ⊢ ( 𝐼  ≈  1o  →  ∃! 𝑔  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 57 |  | reurmo | ⊢ ( ∃! 𝑔  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 )  →  ∃* 𝑔  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 58 | 56 57 | syl | ⊢ ( 𝐼  ≈  1o  →  ∃* 𝑔  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ∃* 𝑔  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 60 | 21 | adantr | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  𝐺  ∈  Grp ) | 
						
							| 61 | 16 | idghm | ⊢ ( 𝐺  ∈  Grp  →  (  I   ↾  ( Base ‘ 𝐺 ) )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 62 | 60 61 | syl | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  (  I   ↾  ( Base ‘ 𝐺 ) )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 63 | 25 | adantr | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 ) ) | 
						
							| 64 |  | fcoi2 | ⊢ ( ( varFGrp ‘ 𝐼 ) : 𝐼 ⟶ ( Base ‘ 𝐺 )  →  ( (  I   ↾  ( Base ‘ 𝐺 ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 65 | 63 64 | syl | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( (  I   ↾  ( Base ‘ 𝐺 ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 66 | 51 | feqmptd | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  𝑓  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( 𝑓 ‘ 𝑥 ) ) ) | 
						
							| 67 |  | eqidd | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 68 |  | oveq1 | ⊢ ( 𝑛  =  ( 𝑓 ‘ 𝑥 )  →  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 69 | 52 66 67 68 | fmptco | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  𝑓 )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 70 | 27 | adantr | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 71 |  | eqid | ⊢ ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  =  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 72 | 17 71 16 | mulgghm2 | ⊢ ( ( 𝐺  ∈  Grp  ∧  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 )  ∈  ( Base ‘ 𝐺 ) )  →  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∈  ( ℤring  GrpHom  𝐺 ) ) | 
						
							| 73 | 60 70 72 | syl2anc | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∈  ( ℤring  GrpHom  𝐺 ) ) | 
						
							| 74 |  | simprl | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ) | 
						
							| 75 |  | ghmco | ⊢ ( ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∈  ( ℤring  GrpHom  𝐺 )  ∧  𝑓  ∈  ( 𝐺  GrpHom  ℤring ) )  →  ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  𝑓 )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 76 | 73 74 75 | syl2anc | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( ( 𝑛  ∈  ℤ  ↦  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  𝑓 )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 77 | 69 76 | eqeltrrd | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∈  ( 𝐺  GrpHom  𝐺 ) ) | 
						
							| 78 | 33 | adantr | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  𝐼  =  { ∪  𝐼 } ) | 
						
							| 79 | 78 | eleq2d | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑦  ∈  𝐼  ↔  𝑦  ∈  { ∪  𝐼 } ) ) | 
						
							| 80 |  | simprr | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) | 
						
							| 81 | 80 | oveq1d | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( 1 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 82 | 16 17 | mulg1 | ⊢ ( ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 )  ∈  ( Base ‘ 𝐺 )  →  ( 1 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) | 
						
							| 83 | 70 82 | syl | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 1 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) | 
						
							| 84 | 81 83 | eqtrd | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) | 
						
							| 85 |  | elsni | ⊢ ( 𝑦  ∈  { ∪  𝐼 }  →  𝑦  =  ∪  𝐼 ) | 
						
							| 86 | 85 | fveq2d | ⊢ ( 𝑦  ∈  { ∪  𝐼 }  →  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 )  =  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) | 
						
							| 87 | 86 | fveq2d | ⊢ ( 𝑦  ∈  { ∪  𝐼 }  →  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) )  =  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 88 | 87 | oveq1d | ⊢ ( 𝑦  ∈  { ∪  𝐼 }  →  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 89 | 88 86 | eqeq12d | ⊢ ( 𝑦  ∈  { ∪  𝐼 }  →  ( ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 )  ↔  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 90 | 84 89 | syl5ibrcom | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑦  ∈  { ∪  𝐼 }  →  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) | 
						
							| 91 | 79 90 | sylbid | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑦  ∈  𝐼  →  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) | 
						
							| 92 | 91 | imp | ⊢ ( ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) | 
						
							| 93 | 92 | mpteq2dva | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) | 
						
							| 94 | 63 | ffvelcdmda | ⊢ ( ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  ∧  𝑦  ∈  𝐼 )  →  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 95 | 63 | feqmptd | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( varFGrp ‘ 𝐼 )  =  ( 𝑦  ∈  𝐼  ↦  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) | 
						
							| 96 |  | eqidd | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 97 |  | fveq2 | ⊢ ( 𝑥  =  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 )  →  ( 𝑓 ‘ 𝑥 )  =  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ) | 
						
							| 98 | 97 | oveq1d | ⊢ ( 𝑥  =  ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 )  →  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 99 | 94 95 96 98 | fmptco | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( 𝑦  ∈  𝐼  ↦  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ 𝑦 ) ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 100 | 93 99 95 | 3eqtr4d | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) | 
						
							| 101 |  | coeq1 | ⊢ ( 𝑔  =  (  I   ↾  ( Base ‘ 𝐺 ) )  →  ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( (  I   ↾  ( Base ‘ 𝐺 ) )  ∘  ( varFGrp ‘ 𝐼 ) ) ) | 
						
							| 102 | 101 | eqeq1d | ⊢ ( 𝑔  =  (  I   ↾  ( Base ‘ 𝐺 ) )  →  ( ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 )  ↔  ( (  I   ↾  ( Base ‘ 𝐺 ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) ) | 
						
							| 103 |  | coeq1 | ⊢ ( 𝑔  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  →  ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  ( varFGrp ‘ 𝐼 ) ) ) | 
						
							| 104 | 103 | eqeq1d | ⊢ ( 𝑔  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  →  ( ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 )  ↔  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) ) | 
						
							| 105 | 102 104 | rmoi | ⊢ ( ( ∃* 𝑔  ∈  ( 𝐺  GrpHom  𝐺 ) ( 𝑔  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 )  ∧  ( (  I   ↾  ( Base ‘ 𝐺 ) )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ( (  I   ↾  ( Base ‘ 𝐺 ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) )  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∈  ( 𝐺  GrpHom  𝐺 )  ∧  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ∘  ( varFGrp ‘ 𝐼 ) )  =  ( varFGrp ‘ 𝐼 ) ) )  →  (  I   ↾  ( Base ‘ 𝐺 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 106 | 59 62 65 77 100 105 | syl122anc | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  (  I   ↾  ( Base ‘ 𝐺 ) )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 107 | 54 106 | eqtr3id | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  𝑥 )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 108 |  | mpteqb | ⊢ ( ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑥  ∈  ( Base ‘ 𝐺 )  →  ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  𝑥 )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑥  =  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 109 |  | id | ⊢ ( 𝑥  ∈  ( Base ‘ 𝐺 )  →  𝑥  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 110 | 108 109 | mprg | ⊢ ( ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  𝑥 )  =  ( 𝑥  ∈  ( Base ‘ 𝐺 )  ↦  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  ↔  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑥  =  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 111 | 107 110 | sylib | ⊢ ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ∀ 𝑥  ∈  ( Base ‘ 𝐺 ) 𝑥  =  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 112 | 111 | r19.21bi | ⊢ ( ( ( 𝐼  ≈  1o  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  𝑥  =  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 113 | 112 | an32s | ⊢ ( ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  𝑥  =  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 114 | 68 | rspceeqv | ⊢ ( ( ( 𝑓 ‘ 𝑥 )  ∈  ℤ  ∧  𝑥  =  ( ( 𝑓 ‘ 𝑥 ) ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) )  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 115 | 53 113 114 | syl2anc | ⊢ ( ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  ( 𝑓  ∈  ( 𝐺  GrpHom  ℤring )  ∧  ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1 ) )  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 116 | 115 | expr | ⊢ ( ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑓  ∈  ( 𝐺  GrpHom  ℤring ) )  →  ( ( 𝑓 ‘ ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) )  =  1  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 117 | 49 116 | syld | ⊢ ( ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  ∧  𝑓  ∈  ( 𝐺  GrpHom  ℤring ) )  →  ( ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 }  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 118 | 117 | rexlimdva | ⊢ ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ( ∃ 𝑓  ∈  ( 𝐺  GrpHom  ℤring ) ( 𝑓  ∘  ( varFGrp ‘ 𝐼 ) )  =  { 〈 ∪  𝐼 ,  1 〉 }  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) ) | 
						
							| 119 | 41 118 | mpd | ⊢ ( ( 𝐼  ≈  1o  ∧  𝑥  ∈  ( Base ‘ 𝐺 ) )  →  ∃ 𝑛  ∈  ℤ 𝑥  =  ( 𝑛 ( .g ‘ 𝐺 ) ( ( varFGrp ‘ 𝐼 ) ‘ ∪  𝐼 ) ) ) | 
						
							| 120 | 16 17 21 27 119 | iscygd | ⊢ ( 𝐼  ≈  1o  →  𝐺  ∈  CycGrp ) | 
						
							| 121 | 15 120 | jaoi | ⊢ ( ( 𝐼  ≺  1o  ∨  𝐼  ≈  1o )  →  𝐺  ∈  CycGrp ) | 
						
							| 122 | 2 121 | sylbi | ⊢ ( 𝐼  ≼  1o  →  𝐺  ∈  CycGrp ) | 
						
							| 123 |  | cygabl | ⊢ ( 𝐺  ∈  CycGrp  →  𝐺  ∈  Abel ) | 
						
							| 124 | 1 | frgpnabl | ⊢ ( 1o  ≺  𝐼  →  ¬  𝐺  ∈  Abel ) | 
						
							| 125 | 124 | con2i | ⊢ ( 𝐺  ∈  Abel  →  ¬  1o  ≺  𝐼 ) | 
						
							| 126 |  | ablgrp | ⊢ ( 𝐺  ∈  Abel  →  𝐺  ∈  Grp ) | 
						
							| 127 |  | eqid | ⊢ ( 0g ‘ 𝐺 )  =  ( 0g ‘ 𝐺 ) | 
						
							| 128 | 16 127 | grpidcl | ⊢ ( 𝐺  ∈  Grp  →  ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 ) ) | 
						
							| 129 | 1 16 | elbasfv | ⊢ ( ( 0g ‘ 𝐺 )  ∈  ( Base ‘ 𝐺 )  →  𝐼  ∈  V ) | 
						
							| 130 | 126 128 129 | 3syl | ⊢ ( 𝐺  ∈  Abel  →  𝐼  ∈  V ) | 
						
							| 131 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 132 |  | nnfi | ⊢ ( 1o  ∈  ω  →  1o  ∈  Fin ) | 
						
							| 133 | 131 132 | ax-mp | ⊢ 1o  ∈  Fin | 
						
							| 134 |  | fidomtri2 | ⊢ ( ( 𝐼  ∈  V  ∧  1o  ∈  Fin )  →  ( 𝐼  ≼  1o  ↔  ¬  1o  ≺  𝐼 ) ) | 
						
							| 135 | 130 133 134 | sylancl | ⊢ ( 𝐺  ∈  Abel  →  ( 𝐼  ≼  1o  ↔  ¬  1o  ≺  𝐼 ) ) | 
						
							| 136 | 125 135 | mpbird | ⊢ ( 𝐺  ∈  Abel  →  𝐼  ≼  1o ) | 
						
							| 137 | 123 136 | syl | ⊢ ( 𝐺  ∈  CycGrp  →  𝐼  ≼  1o ) | 
						
							| 138 | 122 137 | impbii | ⊢ ( 𝐼  ≼  1o  ↔  𝐺  ∈  CycGrp ) |