| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fta1b.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
fta1b.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
fta1b.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 4 |
|
fta1b.o |
⊢ 𝑂 = ( eval1 ‘ 𝑅 ) |
| 5 |
|
fta1b.w |
⊢ 𝑊 = ( 0g ‘ 𝑅 ) |
| 6 |
|
fta1b.z |
⊢ 0 = ( 0g ‘ 𝑃 ) |
| 7 |
|
fta1blem.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 8 |
|
fta1blem.t |
⊢ × = ( .r ‘ 𝑅 ) |
| 9 |
|
fta1blem.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 10 |
|
fta1blem.s |
⊢ · = ( ·𝑠 ‘ 𝑃 ) |
| 11 |
|
fta1blem.1 |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 12 |
|
fta1blem.2 |
⊢ ( 𝜑 → 𝑀 ∈ 𝐾 ) |
| 13 |
|
fta1blem.3 |
⊢ ( 𝜑 → 𝑁 ∈ 𝐾 ) |
| 14 |
|
fta1blem.4 |
⊢ ( 𝜑 → ( 𝑀 × 𝑁 ) = 𝑊 ) |
| 15 |
|
fta1blem.5 |
⊢ ( 𝜑 → 𝑀 ≠ 𝑊 ) |
| 16 |
|
fta1blem.6 |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) ) |
| 17 |
4 9 7 1 2 11 13
|
evl1vard |
⊢ ( 𝜑 → ( 𝑋 ∈ 𝐵 ∧ ( ( 𝑂 ‘ 𝑋 ) ‘ 𝑁 ) = 𝑁 ) ) |
| 18 |
4 1 7 2 11 13 17 12 10 8
|
evl1vsd |
⊢ ( 𝜑 → ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = ( 𝑀 × 𝑁 ) ) ) |
| 19 |
18
|
simprd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = ( 𝑀 × 𝑁 ) ) |
| 20 |
19 14
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) |
| 21 |
|
eqid |
⊢ ( 𝑅 ↑s 𝐾 ) = ( 𝑅 ↑s 𝐾 ) |
| 22 |
|
eqid |
⊢ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) = ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) |
| 23 |
7
|
fvexi |
⊢ 𝐾 ∈ V |
| 24 |
23
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 25 |
4 1 21 7
|
evl1rhm |
⊢ ( 𝑅 ∈ CRing → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 26 |
11 25
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ) |
| 27 |
2 22
|
rhmf |
⊢ ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 28 |
26 27
|
syl |
⊢ ( 𝜑 → 𝑂 : 𝐵 ⟶ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 29 |
18
|
simpld |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 30 |
28 29
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 31 |
21 7 22 11 24 30
|
pwselbas |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) : 𝐾 ⟶ 𝐾 ) |
| 32 |
31
|
ffnd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 ) |
| 33 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 → ( 𝑁 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑁 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) ) ) |
| 34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 𝑁 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑁 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑁 ) = 𝑊 ) ) ) |
| 35 |
13 20 34
|
mpbir2and |
⊢ ( 𝜑 → 𝑁 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 36 |
|
fvex |
⊢ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ V |
| 37 |
36
|
cnvex |
⊢ ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ∈ V |
| 38 |
37
|
imaex |
⊢ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V |
| 39 |
38
|
a1i |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ) |
| 40 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 41 |
40
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ0 ) |
| 42 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 43 |
11 42
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 44 |
9 1 2
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 45 |
43 44
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 46 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 47 |
46 2
|
mgpbas |
⊢ 𝐵 = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 48 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 49 |
47 48
|
mulg1 |
⊢ ( 𝑋 ∈ 𝐵 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
| 50 |
45 49
|
syl |
⊢ ( 𝜑 → ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) = 𝑋 ) |
| 51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = ( 𝑀 · 𝑋 ) ) |
| 52 |
5 7 1 9 10 46 48
|
coe1tmfv1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾 ∧ 1 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = 𝑀 ) |
| 53 |
43 12 41 52
|
syl3anc |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = 𝑀 ) |
| 54 |
1 6 5
|
coe1z |
⊢ ( 𝑅 ∈ Ring → ( coe1 ‘ 0 ) = ( ℕ0 × { 𝑊 } ) ) |
| 55 |
43 54
|
syl |
⊢ ( 𝜑 → ( coe1 ‘ 0 ) = ( ℕ0 × { 𝑊 } ) ) |
| 56 |
55
|
fveq1d |
⊢ ( 𝜑 → ( ( coe1 ‘ 0 ) ‘ 1 ) = ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) ) |
| 57 |
5
|
fvexi |
⊢ 𝑊 ∈ V |
| 58 |
57
|
fvconst2 |
⊢ ( 1 ∈ ℕ0 → ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) = 𝑊 ) |
| 59 |
40 58
|
ax-mp |
⊢ ( ( ℕ0 × { 𝑊 } ) ‘ 1 ) = 𝑊 |
| 60 |
56 59
|
eqtrdi |
⊢ ( 𝜑 → ( ( coe1 ‘ 0 ) ‘ 1 ) = 𝑊 ) |
| 61 |
15 53 60
|
3netr4d |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) ≠ ( ( coe1 ‘ 0 ) ‘ 1 ) ) |
| 62 |
|
fveq2 |
⊢ ( ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 0 → ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( coe1 ‘ 0 ) ) |
| 63 |
62
|
fveq1d |
⊢ ( ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) = 0 → ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) = ( ( coe1 ‘ 0 ) ‘ 1 ) ) |
| 64 |
63
|
necon3i |
⊢ ( ( ( coe1 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) ‘ 1 ) ≠ ( ( coe1 ‘ 0 ) ‘ 1 ) → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ≠ 0 ) |
| 65 |
61 64
|
syl |
⊢ ( 𝜑 → ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ≠ 0 ) |
| 66 |
51 65
|
eqnetrrd |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ≠ 0 ) |
| 67 |
|
eldifsn |
⊢ ( ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ↔ ( ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑀 · 𝑋 ) ≠ 0 ) ) |
| 68 |
29 66 67
|
sylanbrc |
⊢ ( 𝜑 → ( 𝑀 · 𝑋 ) ∈ ( 𝐵 ∖ { 0 } ) ) |
| 69 |
68 16
|
mpd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) |
| 70 |
51
|
fveq2d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) ) |
| 71 |
3 7 1 9 10 46 48 5
|
deg1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑀 ∈ 𝐾 ∧ 𝑀 ≠ 𝑊 ) ∧ 1 ∈ ℕ0 ) → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 ) |
| 72 |
43 12 15 41 71
|
syl121anc |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · ( 1 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑋 ) ) ) = 1 ) |
| 73 |
70 72
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐷 ‘ ( 𝑀 · 𝑋 ) ) = 1 ) |
| 74 |
69 73
|
breqtrd |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ) |
| 75 |
|
hashbnd |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ∧ 1 ∈ ℕ0 ∧ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ) → ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ) |
| 76 |
39 41 74 75
|
syl3anc |
⊢ ( 𝜑 → ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ) |
| 77 |
7 5
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 𝑊 ∈ 𝐾 ) |
| 78 |
43 77
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ 𝐾 ) |
| 79 |
|
eqid |
⊢ ( algSc ‘ 𝑃 ) = ( algSc ‘ 𝑃 ) |
| 80 |
1 79 7 2
|
ply1sclf |
⊢ ( 𝑅 ∈ Ring → ( algSc ‘ 𝑃 ) : 𝐾 ⟶ 𝐵 ) |
| 81 |
43 80
|
syl |
⊢ ( 𝜑 → ( algSc ‘ 𝑃 ) : 𝐾 ⟶ 𝐵 ) |
| 82 |
81 12
|
ffvelcdmd |
⊢ ( 𝜑 → ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ∈ 𝐵 ) |
| 83 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 84 |
|
eqid |
⊢ ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) = ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) |
| 85 |
2 83 84
|
rhmmul |
⊢ ( ( 𝑂 ∈ ( 𝑃 RingHom ( 𝑅 ↑s 𝐾 ) ) ∧ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) ) |
| 86 |
26 82 45 85
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) ) |
| 87 |
1
|
ply1assa |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ AssAlg ) |
| 88 |
11 87
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ AssAlg ) |
| 89 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ CRing → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 90 |
11 89
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 91 |
90
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 92 |
7 91
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 93 |
12 92
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 94 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 95 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
| 96 |
79 94 95 2 83 10
|
asclmul1 |
⊢ ( ( 𝑃 ∈ AssAlg ∧ 𝑀 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ∧ 𝑋 ∈ 𝐵 ) → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) = ( 𝑀 · 𝑋 ) ) |
| 97 |
88 93 45 96
|
syl3anc |
⊢ ( 𝜑 → ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) = ( 𝑀 · 𝑋 ) ) |
| 98 |
97
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ( .r ‘ 𝑃 ) 𝑋 ) ) = ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ) |
| 99 |
28 82
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 100 |
28 45
|
ffvelcdmd |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) ∈ ( Base ‘ ( 𝑅 ↑s 𝐾 ) ) ) |
| 101 |
21 22 11 24 99 100 8 84
|
pwsmulrval |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) = ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∘f × ( 𝑂 ‘ 𝑋 ) ) ) |
| 102 |
4 1 7 79
|
evl1sca |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐾 ) → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) = ( 𝐾 × { 𝑀 } ) ) |
| 103 |
11 12 102
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) = ( 𝐾 × { 𝑀 } ) ) |
| 104 |
4 9 7
|
evl1var |
⊢ ( 𝑅 ∈ CRing → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐾 ) ) |
| 105 |
11 104
|
syl |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝑋 ) = ( I ↾ 𝐾 ) ) |
| 106 |
103 105
|
oveq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ∘f × ( 𝑂 ‘ 𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ) |
| 107 |
101 106
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( ( algSc ‘ 𝑃 ) ‘ 𝑀 ) ) ( .r ‘ ( 𝑅 ↑s 𝐾 ) ) ( 𝑂 ‘ 𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ) |
| 108 |
86 98 107
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) = ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ) |
| 109 |
108
|
fveq1d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) ) |
| 110 |
|
fnconstg |
⊢ ( 𝑀 ∈ 𝐾 → ( 𝐾 × { 𝑀 } ) Fn 𝐾 ) |
| 111 |
12 110
|
syl |
⊢ ( 𝜑 → ( 𝐾 × { 𝑀 } ) Fn 𝐾 ) |
| 112 |
|
fnresi |
⊢ ( I ↾ 𝐾 ) Fn 𝐾 |
| 113 |
112
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝐾 ) Fn 𝐾 ) |
| 114 |
|
fnfvof |
⊢ ( ( ( ( 𝐾 × { 𝑀 } ) Fn 𝐾 ∧ ( I ↾ 𝐾 ) Fn 𝐾 ) ∧ ( 𝐾 ∈ V ∧ 𝑊 ∈ 𝐾 ) ) → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) ) |
| 115 |
111 113 24 78 114
|
syl22anc |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) ) |
| 116 |
|
fvconst2g |
⊢ ( ( 𝑀 ∈ 𝐾 ∧ 𝑊 ∈ 𝐾 ) → ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) = 𝑀 ) |
| 117 |
12 78 116
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) = 𝑀 ) |
| 118 |
|
fvresi |
⊢ ( 𝑊 ∈ 𝐾 → ( ( I ↾ 𝐾 ) ‘ 𝑊 ) = 𝑊 ) |
| 119 |
78 118
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝐾 ) ‘ 𝑊 ) = 𝑊 ) |
| 120 |
117 119
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) = ( 𝑀 × 𝑊 ) ) |
| 121 |
7 8 5
|
ringrz |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐾 ) → ( 𝑀 × 𝑊 ) = 𝑊 ) |
| 122 |
43 12 121
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 × 𝑊 ) = 𝑊 ) |
| 123 |
120 122
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ‘ 𝑊 ) × ( ( I ↾ 𝐾 ) ‘ 𝑊 ) ) = 𝑊 ) |
| 124 |
115 123
|
eqtrd |
⊢ ( 𝜑 → ( ( ( 𝐾 × { 𝑀 } ) ∘f × ( I ↾ 𝐾 ) ) ‘ 𝑊 ) = 𝑊 ) |
| 125 |
109 124
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) |
| 126 |
|
fniniseg |
⊢ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) Fn 𝐾 → ( 𝑊 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑊 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) ) ) |
| 127 |
32 126
|
syl |
⊢ ( 𝜑 → ( 𝑊 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ↔ ( 𝑊 ∈ 𝐾 ∧ ( ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) ‘ 𝑊 ) = 𝑊 ) ) ) |
| 128 |
78 125 127
|
mpbir2and |
⊢ ( 𝜑 → 𝑊 ∈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 129 |
128
|
snssd |
⊢ ( 𝜑 → { 𝑊 } ⊆ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 130 |
|
hashsng |
⊢ ( 𝑊 ∈ 𝐾 → ( ♯ ‘ { 𝑊 } ) = 1 ) |
| 131 |
78 130
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑊 } ) = 1 ) |
| 132 |
|
ssdomg |
⊢ ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V → ( { 𝑊 } ⊆ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) → { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
| 133 |
38 129 132
|
mpsyl |
⊢ ( 𝜑 → { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 134 |
|
snfi |
⊢ { 𝑊 } ∈ Fin |
| 135 |
|
hashdom |
⊢ ( ( { 𝑊 } ∈ Fin ∧ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ V ) → ( ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
| 136 |
134 38 135
|
mp2an |
⊢ ( ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≼ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 137 |
133 136
|
sylibr |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑊 } ) ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
| 138 |
131 137
|
eqbrtrrd |
⊢ ( 𝜑 → 1 ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
| 139 |
|
hashcl |
⊢ ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℕ0 ) |
| 140 |
76 139
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℕ0 ) |
| 141 |
140
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℝ ) |
| 142 |
|
1re |
⊢ 1 ∈ ℝ |
| 143 |
|
letri3 |
⊢ ( ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ↔ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ∧ 1 ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) ) ) |
| 144 |
141 142 143
|
sylancl |
⊢ ( 𝜑 → ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ↔ ( ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ≤ 1 ∧ 1 ≤ ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) ) ) |
| 145 |
74 138 144
|
mpbir2and |
⊢ ( 𝜑 → ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) = 1 ) |
| 146 |
131 145
|
eqtr4d |
⊢ ( 𝜑 → ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
| 147 |
|
hashen |
⊢ ( ( { 𝑊 } ∈ Fin ∧ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ) → ( ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
| 148 |
134 76 147
|
sylancr |
⊢ ( 𝜑 → ( ( ♯ ‘ { 𝑊 } ) = ( ♯ ‘ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ↔ { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) ) |
| 149 |
146 148
|
mpbid |
⊢ ( 𝜑 → { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 150 |
|
fisseneq |
⊢ ( ( ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∈ Fin ∧ { 𝑊 } ⊆ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ∧ { 𝑊 } ≈ ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) → { 𝑊 } = ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 151 |
76 129 149 150
|
syl3anc |
⊢ ( 𝜑 → { 𝑊 } = ( ◡ ( 𝑂 ‘ ( 𝑀 · 𝑋 ) ) “ { 𝑊 } ) ) |
| 152 |
35 151
|
eleqtrrd |
⊢ ( 𝜑 → 𝑁 ∈ { 𝑊 } ) |
| 153 |
|
elsni |
⊢ ( 𝑁 ∈ { 𝑊 } → 𝑁 = 𝑊 ) |
| 154 |
152 153
|
syl |
⊢ ( 𝜑 → 𝑁 = 𝑊 ) |