| Step | Hyp | Ref | Expression | 
						
							| 1 |  | selberg4lem1.1 | ⊢ ( 𝜑  →  𝐴  ∈  ℝ+ ) | 
						
							| 2 |  | selberg4lem1.2 | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  /  𝑦 )  −  ( 2  ·  ( log ‘ 𝑦 ) ) ) )  ≤  𝐴 ) | 
						
							| 3 |  | 2cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  2  ∈  ℂ ) | 
						
							| 4 |  | fzfid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ∈  Fin ) | 
						
							| 5 |  | elfznn | ⊢ ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  →  𝑛  ∈  ℕ ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℕ ) | 
						
							| 7 |  | vmacl | ⊢ ( 𝑛  ∈  ℕ  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℝ ) | 
						
							| 9 | 8 6 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 10 |  | elioore | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ ) | 
						
							| 12 |  | 1rp | ⊢ 1  ∈  ℝ+ | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ+ ) | 
						
							| 14 |  | 1red | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℝ ) | 
						
							| 15 |  | eliooord | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 16 | 15 | adantl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  <  𝑥  ∧  𝑥  <  +∞ ) ) | 
						
							| 17 | 16 | simpld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  <  𝑥 ) | 
						
							| 18 | 14 11 17 | ltled | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ≤  𝑥 ) | 
						
							| 19 | 11 13 18 | rpgecld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ+ ) | 
						
							| 21 | 6 | nnrpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ+ ) | 
						
							| 22 | 20 21 | rpdivcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ+ ) | 
						
							| 23 | 22 | relogcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 24 | 9 23 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 25 | 4 24 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 26 | 11 17 | rplogcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ+ ) | 
						
							| 27 | 25 26 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 28 | 27 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 29 | 19 | relogcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℝ ) | 
						
							| 30 | 29 | rehalfcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℝ ) | 
						
							| 31 | 30 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  2 )  ∈  ℂ ) | 
						
							| 32 | 3 28 31 | subdid | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 2  ·  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( 2  ·  ( ( log ‘ 𝑥 )  /  2 ) ) ) ) | 
						
							| 33 | 29 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ∈  ℂ ) | 
						
							| 34 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 35 | 34 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  2  ≠  0 ) | 
						
							| 36 | 33 3 35 | divcan2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 2  ·  ( ( log ‘ 𝑥 )  /  2 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 37 | 36 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( 2  ·  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 38 | 32 37 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 2  ·  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  =  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) ) | 
						
							| 39 | 38 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 2  ·  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 40 |  | 2re | ⊢ 2  ∈  ℝ | 
						
							| 41 | 40 | a1i | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  2  ∈  ℝ ) | 
						
							| 42 | 27 30 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) )  ∈  ℝ ) | 
						
							| 43 |  | ioossre | ⊢ ( 1 (,) +∞ )  ⊆  ℝ | 
						
							| 44 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 45 |  | o1const | ⊢ ( ( ( 1 (,) +∞ )  ⊆  ℝ  ∧  2  ∈  ℂ )  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  2 )  ∈  𝑂(1) ) | 
						
							| 46 | 43 44 45 | mp2an | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  2 )  ∈  𝑂(1) | 
						
							| 47 | 46 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  2 )  ∈  𝑂(1) ) | 
						
							| 48 |  | vmalogdivsum2 | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) | 
						
							| 49 | 48 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) )  ∈  𝑂(1) ) | 
						
							| 50 | 41 42 47 49 | o1mul2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 2  ·  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  2 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 51 | 39 50 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 52 |  | fzfid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  ∈  Fin ) | 
						
							| 53 |  | elfznn | ⊢ ( 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℕ ) | 
						
							| 55 |  | vmacl | ⊢ ( 𝑚  ∈  ℕ  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( Λ ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 57 | 54 | nnrpd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  𝑚  ∈  ℝ+ ) | 
						
							| 58 | 57 | relogcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( log ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 59 | 11 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℝ ) | 
						
							| 60 | 59 6 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 61 | 60 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ℝ ) | 
						
							| 62 | 61 54 | nndivred | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ ) | 
						
							| 63 |  | chpcl | ⊢ ( ( ( 𝑥  /  𝑛 )  /  𝑚 )  ∈  ℝ  →  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 64 | 62 63 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) )  ∈  ℝ ) | 
						
							| 65 | 58 64 | readdcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) )  ∈  ℝ ) | 
						
							| 66 | 56 65 | remulcld | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  ∈  ℝ ) | 
						
							| 67 | 52 66 | fsumrecl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  ∈  ℝ ) | 
						
							| 68 | 8 67 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  ∈  ℝ ) | 
						
							| 69 | 4 68 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  ∈  ℝ ) | 
						
							| 70 | 19 26 | rpmulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑥  ·  ( log ‘ 𝑥 ) )  ∈  ℝ+ ) | 
						
							| 71 | 69 70 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 72 | 71 29 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 73 | 72 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 74 | 25 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 75 | 26 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( log ‘ 𝑥 )  ≠  0 ) | 
						
							| 76 | 74 33 75 | divcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 77 | 3 76 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 78 | 77 33 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 79 | 71 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  ∈  ℂ ) | 
						
							| 80 | 79 77 33 | nnncan2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) )  −  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 81 | 69 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  ∈  ℂ ) | 
						
							| 82 | 11 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ∈  ℂ ) | 
						
							| 83 | 19 | rpne0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝑥  ≠  0 ) | 
						
							| 84 | 81 82 33 83 75 | divdiv1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  /  ( log ‘ 𝑥 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 85 | 3 74 33 75 | divassd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 86 | 84 85 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  /  ( log ‘ 𝑥 ) )  −  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 87 | 69 19 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 88 | 87 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 89 | 3 74 | mulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 90 | 88 89 33 75 | divsubdird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  /  ( log ‘ 𝑥 ) )  −  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 91 | 83 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ≠  0 ) | 
						
							| 92 | 68 59 91 | redivcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 93 | 92 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 94 | 40 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  2  ∈  ℝ ) | 
						
							| 95 | 94 24 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 96 | 95 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 97 | 4 93 96 | fsumsub | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 98 | 8 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Λ ‘ 𝑛 )  ∈  ℂ ) | 
						
							| 99 | 67 59 91 | redivcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  ∈  ℝ ) | 
						
							| 100 | 99 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  ∈  ℂ ) | 
						
							| 101 |  | 2cnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  2  ∈  ℂ ) | 
						
							| 102 | 23 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( log ‘ ( 𝑥  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 103 | 6 | nncnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℂ ) | 
						
							| 104 | 6 | nnne0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≠  0 ) | 
						
							| 105 | 102 103 104 | divcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 )  ∈  ℂ ) | 
						
							| 106 | 101 105 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) )  ∈  ℂ ) | 
						
							| 107 | 98 100 106 | subdid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  =  ( ( ( Λ ‘ 𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) ) | 
						
							| 108 | 67 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  ∈  ℂ ) | 
						
							| 109 | 82 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 110 | 98 108 109 91 | divassd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  =  ( ( Λ ‘ 𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 ) ) ) | 
						
							| 111 | 98 103 102 104 | div32d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) | 
						
							| 112 | 111 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( 2  ·  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) | 
						
							| 113 | 101 98 105 | mul12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( Λ ‘ 𝑛 )  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) | 
						
							| 114 | 112 113 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) | 
						
							| 115 | 110 114 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( ( ( Λ ‘ 𝑛 )  ·  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 ) )  −  ( ( Λ ‘ 𝑛 )  ·  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) ) | 
						
							| 116 | 107 115 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  =  ( ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 117 | 116 | sumeq2dv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 118 | 68 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  ∈  ℂ ) | 
						
							| 119 | 4 82 118 83 | fsumdivc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 ) ) | 
						
							| 120 | 24 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 121 | 4 3 120 | fsummulc2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 122 | 119 121 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 2  ·  ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 123 | 97 117 122 | 3eqtr4rd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) ) | 
						
							| 124 | 123 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  −  ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 125 | 90 124 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  𝑥 )  /  ( log ‘ 𝑥 ) )  −  ( ( 2  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 126 | 80 86 125 | 3eqtr2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) )  −  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) )  =  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 127 | 126 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) )  −  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 128 |  | 1red | ⊢ ( 𝜑  →  1  ∈  ℝ ) | 
						
							| 129 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝐴  ∈  ℝ+ ) | 
						
							| 130 | 129 | rpred | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝐴  ∈  ℝ ) | 
						
							| 131 | 4 9 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℝ ) | 
						
							| 132 | 131 26 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 133 | 1 | rpcnd | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 134 |  | o1const | ⊢ ( ( ( 1 (,) +∞ )  ⊆  ℝ  ∧  𝐴  ∈  ℂ )  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  𝐴 )  ∈  𝑂(1) ) | 
						
							| 135 | 43 133 134 | sylancr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  𝐴 )  ∈  𝑂(1) ) | 
						
							| 136 |  | 1cnd | ⊢ ( 𝜑  →  1  ∈  ℂ ) | 
						
							| 137 |  | o1const | ⊢ ( ( ( 1 (,) +∞ )  ⊆  ℝ  ∧  1  ∈  ℂ )  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 138 | 43 136 137 | sylancr | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) | 
						
							| 139 | 132 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 140 |  | 1cnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  1  ∈  ℂ ) | 
						
							| 141 | 131 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 142 | 141 33 33 75 | divsubdird | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 143 | 141 33 | subcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 144 | 143 33 75 | divrecd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  /  ( log ‘ 𝑥 ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 145 | 33 75 | dividd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) )  =  1 ) | 
						
							| 146 | 145 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  ( ( log ‘ 𝑥 )  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) ) | 
						
							| 147 | 142 144 146 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) )  =  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) ) | 
						
							| 148 | 147 | mpteq2dva | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) )  =  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) ) ) | 
						
							| 149 | 131 29 | resubcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 150 | 14 26 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 1  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 151 | 19 | ex | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  →  𝑥  ∈  ℝ+ ) ) | 
						
							| 152 | 151 | ssrdv | ⊢ ( 𝜑  →  ( 1 (,) +∞ )  ⊆  ℝ+ ) | 
						
							| 153 |  | vmadivsum | ⊢ ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) | 
						
							| 154 | 153 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ℝ+  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 155 | 152 154 | o1res2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 156 |  | divlogrlim | ⊢ ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0 | 
						
							| 157 |  | rlimo1 | ⊢ ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ⇝𝑟  0  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 158 | 156 157 | mp1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 1  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 159 | 149 150 155 158 | o1mul2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  −  ( log ‘ 𝑥 ) )  ·  ( 1  /  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 160 | 148 159 | eqeltrrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) )  −  1 ) )  ∈  𝑂(1) ) | 
						
							| 161 | 139 140 160 | o1dif | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  1 )  ∈  𝑂(1) ) ) | 
						
							| 162 | 138 161 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 163 | 130 132 135 162 | o1mul2 | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 164 | 130 132 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) )  ∈  ℝ ) | 
						
							| 165 | 23 6 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 )  ∈  ℝ ) | 
						
							| 166 | 94 165 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 167 | 99 166 | resubcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) )  ∈  ℝ ) | 
						
							| 168 | 8 167 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 169 | 4 168 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 170 | 169 26 | rerpdivcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℝ ) | 
						
							| 171 | 170 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) )  ∈  ℂ ) | 
						
							| 172 | 169 | recnd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 173 | 172 | abscld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 174 | 130 131 | remulcld | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝐴  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 175 | 100 106 | subcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) )  ∈  ℂ ) | 
						
							| 176 | 98 175 | mulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 177 | 176 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 178 | 4 177 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ∈  ℝ ) | 
						
							| 179 | 168 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ∈  ℂ ) | 
						
							| 180 | 4 179 | fsumabs | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) ) ) | 
						
							| 181 | 130 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝐴  ∈  ℝ ) | 
						
							| 182 | 181 9 | remulcld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐴  ·  ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  ∈  ℝ ) | 
						
							| 183 | 175 | abscld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ∈  ℝ ) | 
						
							| 184 | 181 6 | nndivred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐴  /  𝑛 )  ∈  ℝ ) | 
						
							| 185 |  | vmage0 | ⊢ ( 𝑛  ∈  ℕ  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 186 | 6 185 | syl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( Λ ‘ 𝑛 ) ) | 
						
							| 187 | 108 109 103 91 104 | divdiv2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  ·  𝑛 )  /  𝑥 ) ) | 
						
							| 188 | 108 103 109 91 | div23d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  ·  𝑛 )  /  𝑥 )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  ·  𝑛 ) ) | 
						
							| 189 | 187 188 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  ·  𝑛 ) ) | 
						
							| 190 | 101 105 103 | mulassd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) )  ·  𝑛 )  =  ( 2  ·  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 )  ·  𝑛 ) ) ) | 
						
							| 191 | 102 103 104 | divcan1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 )  ·  𝑛 )  =  ( log ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 192 | 191 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 )  ·  𝑛 ) )  =  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 193 | 190 192 | eqtr2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  =  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) )  ·  𝑛 ) ) | 
						
							| 194 | 189 193 | oveq12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  ·  𝑛 )  −  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) )  ·  𝑛 ) ) ) | 
						
							| 195 | 100 106 103 | subdird | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) )  ·  𝑛 )  =  ( ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  ·  𝑛 )  −  ( ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) )  ·  𝑛 ) ) ) | 
						
							| 196 | 194 195 | eqtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) )  =  ( ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) )  ·  𝑛 ) ) | 
						
							| 197 | 196 | fveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( abs ‘ ( ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) )  ·  𝑛 ) ) ) | 
						
							| 198 | 175 103 | absmuld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) )  ·  𝑛 ) )  =  ( ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ·  ( abs ‘ 𝑛 ) ) ) | 
						
							| 199 | 6 | nnred | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ∈  ℝ ) | 
						
							| 200 | 21 | rpge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  𝑛 ) | 
						
							| 201 | 199 200 | absidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ 𝑛 )  =  𝑛 ) | 
						
							| 202 | 201 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ·  ( abs ‘ 𝑛 ) )  =  ( ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ·  𝑛 ) ) | 
						
							| 203 | 197 198 202 | 3eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  =  ( ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ·  𝑛 ) ) | 
						
							| 204 |  | fveq2 | ⊢ ( 𝑖  =  𝑚  →  ( Λ ‘ 𝑖 )  =  ( Λ ‘ 𝑚 ) ) | 
						
							| 205 |  | fveq2 | ⊢ ( 𝑖  =  𝑚  →  ( log ‘ 𝑖 )  =  ( log ‘ 𝑚 ) ) | 
						
							| 206 |  | oveq2 | ⊢ ( 𝑖  =  𝑚  →  ( 𝑦  /  𝑖 )  =  ( 𝑦  /  𝑚 ) ) | 
						
							| 207 | 206 | fveq2d | ⊢ ( 𝑖  =  𝑚  →  ( ψ ‘ ( 𝑦  /  𝑖 ) )  =  ( ψ ‘ ( 𝑦  /  𝑚 ) ) ) | 
						
							| 208 | 205 207 | oveq12d | ⊢ ( 𝑖  =  𝑚  →  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) )  =  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( 𝑦  /  𝑚 ) ) ) ) | 
						
							| 209 | 204 208 | oveq12d | ⊢ ( 𝑖  =  𝑚  →  ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( 𝑦  /  𝑚 ) ) ) ) ) | 
						
							| 210 | 209 | cbvsumv | ⊢ Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( 𝑦  /  𝑚 ) ) ) ) | 
						
							| 211 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ⌊ ‘ 𝑦 )  =  ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 212 | 211 | oveq2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( 1 ... ( ⌊ ‘ 𝑦 ) )  =  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 213 |  | fvoveq1 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ψ ‘ ( 𝑦  /  𝑚 ) )  =  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) | 
						
							| 214 | 213 | oveq2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( 𝑦  /  𝑚 ) ) )  =  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) | 
						
							| 215 | 214 | oveq2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( 𝑦  /  𝑚 ) ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) ) | 
						
							| 216 | 215 | adantr | ⊢ ( ( 𝑦  =  ( 𝑥  /  𝑛 )  ∧  𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) )  →  ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( 𝑦  /  𝑚 ) ) ) )  =  ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) ) | 
						
							| 217 | 212 216 | sumeq12dv | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( 𝑦  /  𝑚 ) ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) ) | 
						
							| 218 | 210 217 | eqtrid | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  =  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) ) | 
						
							| 219 |  | id | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  𝑦  =  ( 𝑥  /  𝑛 ) ) | 
						
							| 220 | 218 219 | oveq12d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  /  𝑦 )  =  ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 221 |  | fveq2 | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( log ‘ 𝑦 )  =  ( log ‘ ( 𝑥  /  𝑛 ) ) ) | 
						
							| 222 | 221 | oveq2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( 2  ·  ( log ‘ 𝑦 ) )  =  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 223 | 220 222 | oveq12d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  /  𝑦 )  −  ( 2  ·  ( log ‘ 𝑦 ) ) )  =  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) | 
						
							| 224 | 223 | fveq2d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( abs ‘ ( ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  /  𝑦 )  −  ( 2  ·  ( log ‘ 𝑦 ) ) ) )  =  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) ) ) | 
						
							| 225 | 224 | breq1d | ⊢ ( 𝑦  =  ( 𝑥  /  𝑛 )  →  ( ( abs ‘ ( ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  /  𝑦 )  −  ( 2  ·  ( log ‘ 𝑦 ) ) ) )  ≤  𝐴  ↔  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  𝐴 ) ) | 
						
							| 226 | 2 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ∀ 𝑦  ∈  ( 1 [,) +∞ ) ( abs ‘ ( ( Σ 𝑖  ∈  ( 1 ... ( ⌊ ‘ 𝑦 ) ) ( ( Λ ‘ 𝑖 )  ·  ( ( log ‘ 𝑖 )  +  ( ψ ‘ ( 𝑦  /  𝑖 ) ) ) )  /  𝑦 )  −  ( 2  ·  ( log ‘ 𝑦 ) ) ) )  ≤  𝐴 ) | 
						
							| 227 | 103 | mullidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  =  𝑛 ) | 
						
							| 228 |  | fznnfl | ⊢ ( 𝑥  ∈  ℝ  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 229 | 11 228 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) )  ↔  ( 𝑛  ∈  ℕ  ∧  𝑛  ≤  𝑥 ) ) ) | 
						
							| 230 | 229 | simplbda | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝑛  ≤  𝑥 ) | 
						
							| 231 | 227 230 | eqbrtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 1  ·  𝑛 )  ≤  𝑥 ) | 
						
							| 232 |  | 1red | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ∈  ℝ ) | 
						
							| 233 | 232 59 21 | lemuldivd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( 1  ·  𝑛 )  ≤  𝑥  ↔  1  ≤  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 234 | 231 233 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  1  ≤  ( 𝑥  /  𝑛 ) ) | 
						
							| 235 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 236 |  | elicopnf | ⊢ ( 1  ∈  ℝ  →  ( ( 𝑥  /  𝑛 )  ∈  ( 1 [,) +∞ )  ↔  ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  1  ≤  ( 𝑥  /  𝑛 ) ) ) ) | 
						
							| 237 | 235 236 | ax-mp | ⊢ ( ( 𝑥  /  𝑛 )  ∈  ( 1 [,) +∞ )  ↔  ( ( 𝑥  /  𝑛 )  ∈  ℝ  ∧  1  ≤  ( 𝑥  /  𝑛 ) ) ) | 
						
							| 238 | 60 234 237 | sylanbrc | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝑥  /  𝑛 )  ∈  ( 1 [,) +∞ ) ) | 
						
							| 239 | 225 226 238 | rspcdva | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  ( 𝑥  /  𝑛 ) )  −  ( 2  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) ) ) )  ≤  𝐴 ) | 
						
							| 240 | 203 239 | eqbrtrrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ·  𝑛 )  ≤  𝐴 ) | 
						
							| 241 | 183 181 21 | lemuldivd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ·  𝑛 )  ≤  𝐴  ↔  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ≤  ( 𝐴  /  𝑛 ) ) ) | 
						
							| 242 | 240 241 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  ≤  ( 𝐴  /  𝑛 ) ) | 
						
							| 243 | 183 184 8 186 242 | lemul2ad | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  ·  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ≤  ( ( Λ ‘ 𝑛 )  ·  ( 𝐴  /  𝑛 ) ) ) | 
						
							| 244 | 98 175 | absmuld | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  =  ( ( abs ‘ ( Λ ‘ 𝑛 ) )  ·  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) ) ) | 
						
							| 245 | 8 186 | absidd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( Λ ‘ 𝑛 ) )  =  ( Λ ‘ 𝑛 ) ) | 
						
							| 246 | 245 | oveq1d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( abs ‘ ( Λ ‘ 𝑛 ) )  ·  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) ) ) | 
						
							| 247 | 244 246 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( abs ‘ ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) ) ) | 
						
							| 248 | 133 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 249 | 248 98 103 104 | div12d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( 𝐴  ·  ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  =  ( ( Λ ‘ 𝑛 )  ·  ( 𝐴  /  𝑛 ) ) ) | 
						
							| 250 | 243 247 249 | 3brtr4d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ≤  ( 𝐴  ·  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 251 | 4 177 182 250 | fsumle | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐴  ·  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 252 | 133 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  𝐴  ∈  ℂ ) | 
						
							| 253 | 9 | recnd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  ( ( Λ ‘ 𝑛 )  /  𝑛 )  ∈  ℂ ) | 
						
							| 254 | 4 252 253 | fsummulc2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( 𝐴  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  =  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( 𝐴  ·  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 255 | 251 254 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( abs ‘ ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ≤  ( 𝐴  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 256 | 173 178 174 180 255 | letrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  ≤  ( 𝐴  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) ) | 
						
							| 257 | 173 174 26 256 | lediv1dd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) )  ≤  ( ( 𝐴  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 258 | 252 141 33 75 | divassd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( 𝐴  ·  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) )  /  ( log ‘ 𝑥 ) )  =  ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 259 | 257 258 | breqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) )  ≤  ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 260 | 172 33 75 | absdivd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  /  ( abs ‘ ( log ‘ 𝑥 ) ) ) ) | 
						
							| 261 | 26 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( log ‘ 𝑥 ) ) | 
						
							| 262 | 29 261 | absidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( log ‘ 𝑥 ) )  =  ( log ‘ 𝑥 ) ) | 
						
							| 263 | 262 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  /  ( abs ‘ ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 264 | 260 263 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  =  ( ( abs ‘ Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) ) )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 265 | 129 | rpge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  𝐴 ) | 
						
							| 266 | 8 21 186 | divge0d | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  ∧  𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) )  →  0  ≤  ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 267 | 4 9 266 | fsumge0 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 ) ) | 
						
							| 268 | 131 26 267 | divge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) | 
						
							| 269 | 130 132 265 268 | mulge0d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  0  ≤  ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 270 | 164 269 | absidd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) )  =  ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) ) | 
						
							| 271 | 259 264 270 | 3brtr4d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( 1 (,) +∞ ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ≤  ( abs ‘ ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 272 | 271 | adantrr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  ( 1 (,) +∞ )  ∧  1  ≤  𝑥 ) )  →  ( abs ‘ ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ≤  ( abs ‘ ( 𝐴  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  /  𝑛 )  /  ( log ‘ 𝑥 ) ) ) ) ) | 
						
							| 273 | 128 163 164 171 272 | o1le | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  ( ( Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) )  /  𝑥 )  −  ( 2  ·  ( ( log ‘ ( 𝑥  /  𝑛 ) )  /  𝑛 ) ) ) )  /  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) | 
						
							| 274 | 127 273 | eqeltrd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) )  −  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) ) )  ∈  𝑂(1) ) | 
						
							| 275 | 73 78 274 | o1dif | ⊢ ( 𝜑  →  ( ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1)  ↔  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( 2  ·  ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( ( Λ ‘ 𝑛 )  /  𝑛 )  ·  ( log ‘ ( 𝑥  /  𝑛 ) ) )  /  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) ) | 
						
							| 276 | 51 275 | mpbird | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 1 (,) +∞ )  ↦  ( ( Σ 𝑛  ∈  ( 1 ... ( ⌊ ‘ 𝑥 ) ) ( ( Λ ‘ 𝑛 )  ·  Σ 𝑚  ∈  ( 1 ... ( ⌊ ‘ ( 𝑥  /  𝑛 ) ) ) ( ( Λ ‘ 𝑚 )  ·  ( ( log ‘ 𝑚 )  +  ( ψ ‘ ( ( 𝑥  /  𝑛 )  /  𝑚 ) ) ) ) )  /  ( 𝑥  ·  ( log ‘ 𝑥 ) ) )  −  ( log ‘ 𝑥 ) ) )  ∈  𝑂(1) ) |