Step |
Hyp |
Ref |
Expression |
1 |
|
selberg4lem1.1 |
|
2 |
|
selberg4lem1.2 |
|
3 |
|
2cnd |
|
4 |
|
fzfid |
|
5 |
|
elfznn |
|
6 |
5
|
adantl |
|
7 |
|
vmacl |
|
8 |
6 7
|
syl |
|
9 |
8 6
|
nndivred |
|
10 |
|
elioore |
|
11 |
10
|
adantl |
|
12 |
|
1rp |
|
13 |
12
|
a1i |
|
14 |
|
1red |
|
15 |
|
eliooord |
|
16 |
15
|
adantl |
|
17 |
16
|
simpld |
|
18 |
14 11 17
|
ltled |
|
19 |
11 13 18
|
rpgecld |
|
20 |
19
|
adantr |
|
21 |
6
|
nnrpd |
|
22 |
20 21
|
rpdivcld |
|
23 |
22
|
relogcld |
|
24 |
9 23
|
remulcld |
|
25 |
4 24
|
fsumrecl |
|
26 |
11 17
|
rplogcld |
|
27 |
25 26
|
rerpdivcld |
|
28 |
27
|
recnd |
|
29 |
19
|
relogcld |
|
30 |
29
|
rehalfcld |
|
31 |
30
|
recnd |
|
32 |
3 28 31
|
subdid |
|
33 |
29
|
recnd |
|
34 |
|
2ne0 |
|
35 |
34
|
a1i |
|
36 |
33 3 35
|
divcan2d |
|
37 |
36
|
oveq2d |
|
38 |
32 37
|
eqtrd |
|
39 |
38
|
mpteq2dva |
|
40 |
|
2re |
|
41 |
40
|
a1i |
|
42 |
27 30
|
resubcld |
|
43 |
|
ioossre |
|
44 |
|
2cn |
|
45 |
|
o1const |
|
46 |
43 44 45
|
mp2an |
|
47 |
46
|
a1i |
|
48 |
|
vmalogdivsum2 |
|
49 |
48
|
a1i |
|
50 |
41 42 47 49
|
o1mul2 |
|
51 |
39 50
|
eqeltrrd |
|
52 |
|
fzfid |
|
53 |
|
elfznn |
|
54 |
53
|
adantl |
|
55 |
|
vmacl |
|
56 |
54 55
|
syl |
|
57 |
54
|
nnrpd |
|
58 |
57
|
relogcld |
|
59 |
11
|
adantr |
|
60 |
59 6
|
nndivred |
|
61 |
60
|
adantr |
|
62 |
61 54
|
nndivred |
|
63 |
|
chpcl |
|
64 |
62 63
|
syl |
|
65 |
58 64
|
readdcld |
|
66 |
56 65
|
remulcld |
|
67 |
52 66
|
fsumrecl |
|
68 |
8 67
|
remulcld |
|
69 |
4 68
|
fsumrecl |
|
70 |
19 26
|
rpmulcld |
|
71 |
69 70
|
rerpdivcld |
|
72 |
71 29
|
resubcld |
|
73 |
72
|
recnd |
|
74 |
25
|
recnd |
|
75 |
26
|
rpne0d |
|
76 |
74 33 75
|
divcld |
|
77 |
3 76
|
mulcld |
|
78 |
77 33
|
subcld |
|
79 |
71
|
recnd |
|
80 |
79 77 33
|
nnncan2d |
|
81 |
69
|
recnd |
|
82 |
11
|
recnd |
|
83 |
19
|
rpne0d |
|
84 |
81 82 33 83 75
|
divdiv1d |
|
85 |
3 74 33 75
|
divassd |
|
86 |
84 85
|
oveq12d |
|
87 |
69 19
|
rerpdivcld |
|
88 |
87
|
recnd |
|
89 |
3 74
|
mulcld |
|
90 |
88 89 33 75
|
divsubdird |
|
91 |
83
|
adantr |
|
92 |
68 59 91
|
redivcld |
|
93 |
92
|
recnd |
|
94 |
40
|
a1i |
|
95 |
94 24
|
remulcld |
|
96 |
95
|
recnd |
|
97 |
4 93 96
|
fsumsub |
|
98 |
8
|
recnd |
|
99 |
67 59 91
|
redivcld |
|
100 |
99
|
recnd |
|
101 |
|
2cnd |
|
102 |
23
|
recnd |
|
103 |
6
|
nncnd |
|
104 |
6
|
nnne0d |
|
105 |
102 103 104
|
divcld |
|
106 |
101 105
|
mulcld |
|
107 |
98 100 106
|
subdid |
|
108 |
67
|
recnd |
|
109 |
82
|
adantr |
|
110 |
98 108 109 91
|
divassd |
|
111 |
98 103 102 104
|
div32d |
|
112 |
111
|
oveq2d |
|
113 |
101 98 105
|
mul12d |
|
114 |
112 113
|
eqtrd |
|
115 |
110 114
|
oveq12d |
|
116 |
107 115
|
eqtr4d |
|
117 |
116
|
sumeq2dv |
|
118 |
68
|
recnd |
|
119 |
4 82 118 83
|
fsumdivc |
|
120 |
24
|
recnd |
|
121 |
4 3 120
|
fsummulc2 |
|
122 |
119 121
|
oveq12d |
|
123 |
97 117 122
|
3eqtr4rd |
|
124 |
123
|
oveq1d |
|
125 |
90 124
|
eqtr3d |
|
126 |
80 86 125
|
3eqtr2d |
|
127 |
126
|
mpteq2dva |
|
128 |
|
1red |
|
129 |
1
|
adantr |
|
130 |
129
|
rpred |
|
131 |
4 9
|
fsumrecl |
|
132 |
131 26
|
rerpdivcld |
|
133 |
1
|
rpcnd |
|
134 |
|
o1const |
|
135 |
43 133 134
|
sylancr |
|
136 |
|
1cnd |
|
137 |
|
o1const |
|
138 |
43 136 137
|
sylancr |
|
139 |
132
|
recnd |
|
140 |
|
1cnd |
|
141 |
131
|
recnd |
|
142 |
141 33 33 75
|
divsubdird |
|
143 |
141 33
|
subcld |
|
144 |
143 33 75
|
divrecd |
|
145 |
33 75
|
dividd |
|
146 |
145
|
oveq2d |
|
147 |
142 144 146
|
3eqtr3d |
|
148 |
147
|
mpteq2dva |
|
149 |
131 29
|
resubcld |
|
150 |
14 26
|
rerpdivcld |
|
151 |
19
|
ex |
|
152 |
151
|
ssrdv |
|
153 |
|
vmadivsum |
|
154 |
153
|
a1i |
|
155 |
152 154
|
o1res2 |
|
156 |
|
divlogrlim |
|
157 |
|
rlimo1 |
|
158 |
156 157
|
mp1i |
|
159 |
149 150 155 158
|
o1mul2 |
|
160 |
148 159
|
eqeltrrd |
|
161 |
139 140 160
|
o1dif |
|
162 |
138 161
|
mpbird |
|
163 |
130 132 135 162
|
o1mul2 |
|
164 |
130 132
|
remulcld |
|
165 |
23 6
|
nndivred |
|
166 |
94 165
|
remulcld |
|
167 |
99 166
|
resubcld |
|
168 |
8 167
|
remulcld |
|
169 |
4 168
|
fsumrecl |
|
170 |
169 26
|
rerpdivcld |
|
171 |
170
|
recnd |
|
172 |
169
|
recnd |
|
173 |
172
|
abscld |
|
174 |
130 131
|
remulcld |
|
175 |
100 106
|
subcld |
|
176 |
98 175
|
mulcld |
|
177 |
176
|
abscld |
|
178 |
4 177
|
fsumrecl |
|
179 |
168
|
recnd |
|
180 |
4 179
|
fsumabs |
|
181 |
130
|
adantr |
|
182 |
181 9
|
remulcld |
|
183 |
175
|
abscld |
|
184 |
181 6
|
nndivred |
|
185 |
|
vmage0 |
|
186 |
6 185
|
syl |
|
187 |
108 109 103 91 104
|
divdiv2d |
|
188 |
108 103 109 91
|
div23d |
|
189 |
187 188
|
eqtrd |
|
190 |
101 105 103
|
mulassd |
|
191 |
102 103 104
|
divcan1d |
|
192 |
191
|
oveq2d |
|
193 |
190 192
|
eqtr2d |
|
194 |
189 193
|
oveq12d |
|
195 |
100 106 103
|
subdird |
|
196 |
194 195
|
eqtr4d |
|
197 |
196
|
fveq2d |
|
198 |
175 103
|
absmuld |
|
199 |
6
|
nnred |
|
200 |
21
|
rpge0d |
|
201 |
199 200
|
absidd |
|
202 |
201
|
oveq2d |
|
203 |
197 198 202
|
3eqtrd |
|
204 |
|
fveq2 |
|
205 |
|
fveq2 |
|
206 |
|
oveq2 |
|
207 |
206
|
fveq2d |
|
208 |
205 207
|
oveq12d |
|
209 |
204 208
|
oveq12d |
|
210 |
209
|
cbvsumv |
|
211 |
|
fveq2 |
|
212 |
211
|
oveq2d |
|
213 |
|
fvoveq1 |
|
214 |
213
|
oveq2d |
|
215 |
214
|
oveq2d |
|
216 |
215
|
adantr |
|
217 |
212 216
|
sumeq12dv |
|
218 |
210 217
|
eqtrid |
|
219 |
|
id |
|
220 |
218 219
|
oveq12d |
|
221 |
|
fveq2 |
|
222 |
221
|
oveq2d |
|
223 |
220 222
|
oveq12d |
|
224 |
223
|
fveq2d |
|
225 |
224
|
breq1d |
|
226 |
2
|
ad2antrr |
|
227 |
103
|
mulid2d |
|
228 |
|
fznnfl |
|
229 |
11 228
|
syl |
|
230 |
229
|
simplbda |
|
231 |
227 230
|
eqbrtrd |
|
232 |
|
1red |
|
233 |
232 59 21
|
lemuldivd |
|
234 |
231 233
|
mpbid |
|
235 |
|
1re |
|
236 |
|
elicopnf |
|
237 |
235 236
|
ax-mp |
|
238 |
60 234 237
|
sylanbrc |
|
239 |
225 226 238
|
rspcdva |
|
240 |
203 239
|
eqbrtrrd |
|
241 |
183 181 21
|
lemuldivd |
|
242 |
240 241
|
mpbid |
|
243 |
183 184 8 186 242
|
lemul2ad |
|
244 |
98 175
|
absmuld |
|
245 |
8 186
|
absidd |
|
246 |
245
|
oveq1d |
|
247 |
244 246
|
eqtrd |
|
248 |
133
|
ad2antrr |
|
249 |
248 98 103 104
|
div12d |
|
250 |
243 247 249
|
3brtr4d |
|
251 |
4 177 182 250
|
fsumle |
|
252 |
133
|
adantr |
|
253 |
9
|
recnd |
|
254 |
4 252 253
|
fsummulc2 |
|
255 |
251 254
|
breqtrrd |
|
256 |
173 178 174 180 255
|
letrd |
|
257 |
173 174 26 256
|
lediv1dd |
|
258 |
252 141 33 75
|
divassd |
|
259 |
257 258
|
breqtrd |
|
260 |
172 33 75
|
absdivd |
|
261 |
26
|
rpge0d |
|
262 |
29 261
|
absidd |
|
263 |
262
|
oveq2d |
|
264 |
260 263
|
eqtrd |
|
265 |
129
|
rpge0d |
|
266 |
8 21 186
|
divge0d |
|
267 |
4 9 266
|
fsumge0 |
|
268 |
131 26 267
|
divge0d |
|
269 |
130 132 265 268
|
mulge0d |
|
270 |
164 269
|
absidd |
|
271 |
259 264 270
|
3brtr4d |
|
272 |
271
|
adantrr |
|
273 |
128 163 164 171 272
|
o1le |
|
274 |
127 273
|
eqeltrd |
|
275 |
73 78 274
|
o1dif |
|
276 |
51 275
|
mpbird |
|