Metamath Proof Explorer


Theorem selberg4lem1

Description: Lemma for selberg4 . Equation 10.4.20 of Shapiro, p. 422. (Contributed by Mario Carneiro, 30-May-2016)

Ref Expression
Hypotheses selberg4lem1.1 φ A +
selberg4lem1.2 φ y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y A
Assertion selberg4lem1 φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x 𝑂1

Proof

Step Hyp Ref Expression
1 selberg4lem1.1 φ A +
2 selberg4lem1.2 φ y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y A
3 2cnd φ x 1 +∞ 2
4 fzfid φ x 1 +∞ 1 x Fin
5 elfznn n 1 x n
6 5 adantl φ x 1 +∞ n 1 x n
7 vmacl n Λ n
8 6 7 syl φ x 1 +∞ n 1 x Λ n
9 8 6 nndivred φ x 1 +∞ n 1 x Λ n n
10 elioore x 1 +∞ x
11 10 adantl φ x 1 +∞ x
12 1rp 1 +
13 12 a1i φ x 1 +∞ 1 +
14 1red φ x 1 +∞ 1
15 eliooord x 1 +∞ 1 < x x < +∞
16 15 adantl φ x 1 +∞ 1 < x x < +∞
17 16 simpld φ x 1 +∞ 1 < x
18 14 11 17 ltled φ x 1 +∞ 1 x
19 11 13 18 rpgecld φ x 1 +∞ x +
20 19 adantr φ x 1 +∞ n 1 x x +
21 6 nnrpd φ x 1 +∞ n 1 x n +
22 20 21 rpdivcld φ x 1 +∞ n 1 x x n +
23 22 relogcld φ x 1 +∞ n 1 x log x n
24 9 23 remulcld φ x 1 +∞ n 1 x Λ n n log x n
25 4 24 fsumrecl φ x 1 +∞ n = 1 x Λ n n log x n
26 11 17 rplogcld φ x 1 +∞ log x +
27 25 26 rerpdivcld φ x 1 +∞ n = 1 x Λ n n log x n log x
28 27 recnd φ x 1 +∞ n = 1 x Λ n n log x n log x
29 19 relogcld φ x 1 +∞ log x
30 29 rehalfcld φ x 1 +∞ log x 2
31 30 recnd φ x 1 +∞ log x 2
32 3 28 31 subdid φ x 1 +∞ 2 n = 1 x Λ n n log x n log x log x 2 = 2 n = 1 x Λ n n log x n log x 2 log x 2
33 29 recnd φ x 1 +∞ log x
34 2ne0 2 0
35 34 a1i φ x 1 +∞ 2 0
36 33 3 35 divcan2d φ x 1 +∞ 2 log x 2 = log x
37 36 oveq2d φ x 1 +∞ 2 n = 1 x Λ n n log x n log x 2 log x 2 = 2 n = 1 x Λ n n log x n log x log x
38 32 37 eqtrd φ x 1 +∞ 2 n = 1 x Λ n n log x n log x log x 2 = 2 n = 1 x Λ n n log x n log x log x
39 38 mpteq2dva φ x 1 +∞ 2 n = 1 x Λ n n log x n log x log x 2 = x 1 +∞ 2 n = 1 x Λ n n log x n log x log x
40 2re 2
41 40 a1i φ x 1 +∞ 2
42 27 30 resubcld φ x 1 +∞ n = 1 x Λ n n log x n log x log x 2
43 ioossre 1 +∞
44 2cn 2
45 o1const 1 +∞ 2 x 1 +∞ 2 𝑂1
46 43 44 45 mp2an x 1 +∞ 2 𝑂1
47 46 a1i φ x 1 +∞ 2 𝑂1
48 vmalogdivsum2 x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
49 48 a1i φ x 1 +∞ n = 1 x Λ n n log x n log x log x 2 𝑂1
50 41 42 47 49 o1mul2 φ x 1 +∞ 2 n = 1 x Λ n n log x n log x log x 2 𝑂1
51 39 50 eqeltrrd φ x 1 +∞ 2 n = 1 x Λ n n log x n log x log x 𝑂1
52 fzfid φ x 1 +∞ n 1 x 1 x n Fin
53 elfznn m 1 x n m
54 53 adantl φ x 1 +∞ n 1 x m 1 x n m
55 vmacl m Λ m
56 54 55 syl φ x 1 +∞ n 1 x m 1 x n Λ m
57 54 nnrpd φ x 1 +∞ n 1 x m 1 x n m +
58 57 relogcld φ x 1 +∞ n 1 x m 1 x n log m
59 11 adantr φ x 1 +∞ n 1 x x
60 59 6 nndivred φ x 1 +∞ n 1 x x n
61 60 adantr φ x 1 +∞ n 1 x m 1 x n x n
62 61 54 nndivred φ x 1 +∞ n 1 x m 1 x n x n m
63 chpcl x n m ψ x n m
64 62 63 syl φ x 1 +∞ n 1 x m 1 x n ψ x n m
65 58 64 readdcld φ x 1 +∞ n 1 x m 1 x n log m + ψ x n m
66 56 65 remulcld φ x 1 +∞ n 1 x m 1 x n Λ m log m + ψ x n m
67 52 66 fsumrecl φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m
68 8 67 remulcld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m
69 4 68 fsumrecl φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m
70 19 26 rpmulcld φ x 1 +∞ x log x +
71 69 70 rerpdivcld φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
72 71 29 resubcld φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x
73 72 recnd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x
74 25 recnd φ x 1 +∞ n = 1 x Λ n n log x n
75 26 rpne0d φ x 1 +∞ log x 0
76 74 33 75 divcld φ x 1 +∞ n = 1 x Λ n n log x n log x
77 3 76 mulcld φ x 1 +∞ 2 n = 1 x Λ n n log x n log x
78 77 33 subcld φ x 1 +∞ 2 n = 1 x Λ n n log x n log x log x
79 71 recnd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
80 79 77 33 nnncan2d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x - log x - 2 n = 1 x Λ n n log x n log x log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x 2 n = 1 x Λ n n log x n log x
81 69 recnd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m
82 11 recnd φ x 1 +∞ x
83 19 rpne0d φ x 1 +∞ x 0
84 81 82 33 83 75 divdiv1d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x
85 3 74 33 75 divassd φ x 1 +∞ 2 n = 1 x Λ n n log x n log x = 2 n = 1 x Λ n n log x n log x
86 84 85 oveq12d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x 2 n = 1 x Λ n n log x n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x 2 n = 1 x Λ n n log x n log x
87 69 19 rerpdivcld φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x
88 87 recnd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x
89 3 74 mulcld φ x 1 +∞ 2 n = 1 x Λ n n log x n
90 88 89 33 75 divsubdird φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 n = 1 x Λ n n log x n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x 2 n = 1 x Λ n n log x n log x
91 83 adantr φ x 1 +∞ n 1 x x 0
92 68 59 91 redivcld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x
93 92 recnd φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x
94 40 a1i φ x 1 +∞ n 1 x 2
95 94 24 remulcld φ x 1 +∞ n 1 x 2 Λ n n log x n
96 95 recnd φ x 1 +∞ n 1 x 2 Λ n n log x n
97 4 93 96 fsumsub φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 Λ n n log x n = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x n = 1 x 2 Λ n n log x n
98 8 recnd φ x 1 +∞ n 1 x Λ n
99 67 59 91 redivcld φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x
100 99 recnd φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x
101 2cnd φ x 1 +∞ n 1 x 2
102 23 recnd φ x 1 +∞ n 1 x log x n
103 6 nncnd φ x 1 +∞ n 1 x n
104 6 nnne0d φ x 1 +∞ n 1 x n 0
105 102 103 104 divcld φ x 1 +∞ n 1 x log x n n
106 101 105 mulcld φ x 1 +∞ n 1 x 2 log x n n
107 98 100 106 subdid φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n = Λ n m = 1 x n Λ m log m + ψ x n m x Λ n 2 log x n n
108 67 recnd φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m
109 82 adantr φ x 1 +∞ n 1 x x
110 98 108 109 91 divassd φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x = Λ n m = 1 x n Λ m log m + ψ x n m x
111 98 103 102 104 div32d φ x 1 +∞ n 1 x Λ n n log x n = Λ n log x n n
112 111 oveq2d φ x 1 +∞ n 1 x 2 Λ n n log x n = 2 Λ n log x n n
113 101 98 105 mul12d φ x 1 +∞ n 1 x 2 Λ n log x n n = Λ n 2 log x n n
114 112 113 eqtrd φ x 1 +∞ n 1 x 2 Λ n n log x n = Λ n 2 log x n n
115 110 114 oveq12d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 Λ n n log x n = Λ n m = 1 x n Λ m log m + ψ x n m x Λ n 2 log x n n
116 107 115 eqtr4d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n = Λ n m = 1 x n Λ m log m + ψ x n m x 2 Λ n n log x n
117 116 sumeq2dv φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 Λ n n log x n
118 68 recnd φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m
119 4 82 118 83 fsumdivc φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x
120 24 recnd φ x 1 +∞ n 1 x Λ n n log x n
121 4 3 120 fsummulc2 φ x 1 +∞ 2 n = 1 x Λ n n log x n = n = 1 x 2 Λ n n log x n
122 119 121 oveq12d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 n = 1 x Λ n n log x n = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x n = 1 x 2 Λ n n log x n
123 97 117 122 3eqtr4rd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 n = 1 x Λ n n log x n = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
124 123 oveq1d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 n = 1 x Λ n n log x n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
125 90 124 eqtr3d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x 2 n = 1 x Λ n n log x n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
126 80 86 125 3eqtr2d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x - log x - 2 n = 1 x Λ n n log x n log x log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
127 126 mpteq2dva φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x - log x - 2 n = 1 x Λ n n log x n log x log x = x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
128 1red φ 1
129 1 adantr φ x 1 +∞ A +
130 129 rpred φ x 1 +∞ A
131 4 9 fsumrecl φ x 1 +∞ n = 1 x Λ n n
132 131 26 rerpdivcld φ x 1 +∞ n = 1 x Λ n n log x
133 1 rpcnd φ A
134 o1const 1 +∞ A x 1 +∞ A 𝑂1
135 43 133 134 sylancr φ x 1 +∞ A 𝑂1
136 1cnd φ 1
137 o1const 1 +∞ 1 x 1 +∞ 1 𝑂1
138 43 136 137 sylancr φ x 1 +∞ 1 𝑂1
139 132 recnd φ x 1 +∞ n = 1 x Λ n n log x
140 1cnd φ x 1 +∞ 1
141 131 recnd φ x 1 +∞ n = 1 x Λ n n
142 141 33 33 75 divsubdird φ x 1 +∞ n = 1 x Λ n n log x log x = n = 1 x Λ n n log x log x log x
143 141 33 subcld φ x 1 +∞ n = 1 x Λ n n log x
144 143 33 75 divrecd φ x 1 +∞ n = 1 x Λ n n log x log x = n = 1 x Λ n n log x 1 log x
145 33 75 dividd φ x 1 +∞ log x log x = 1
146 145 oveq2d φ x 1 +∞ n = 1 x Λ n n log x log x log x = n = 1 x Λ n n log x 1
147 142 144 146 3eqtr3d φ x 1 +∞ n = 1 x Λ n n log x 1 log x = n = 1 x Λ n n log x 1
148 147 mpteq2dva φ x 1 +∞ n = 1 x Λ n n log x 1 log x = x 1 +∞ n = 1 x Λ n n log x 1
149 131 29 resubcld φ x 1 +∞ n = 1 x Λ n n log x
150 14 26 rerpdivcld φ x 1 +∞ 1 log x
151 19 ex φ x 1 +∞ x +
152 151 ssrdv φ 1 +∞ +
153 vmadivsum x + n = 1 x Λ n n log x 𝑂1
154 153 a1i φ x + n = 1 x Λ n n log x 𝑂1
155 152 154 o1res2 φ x 1 +∞ n = 1 x Λ n n log x 𝑂1
156 divlogrlim x 1 +∞ 1 log x 0
157 rlimo1 x 1 +∞ 1 log x 0 x 1 +∞ 1 log x 𝑂1
158 156 157 mp1i φ x 1 +∞ 1 log x 𝑂1
159 149 150 155 158 o1mul2 φ x 1 +∞ n = 1 x Λ n n log x 1 log x 𝑂1
160 148 159 eqeltrrd φ x 1 +∞ n = 1 x Λ n n log x 1 𝑂1
161 139 140 160 o1dif φ x 1 +∞ n = 1 x Λ n n log x 𝑂1 x 1 +∞ 1 𝑂1
162 138 161 mpbird φ x 1 +∞ n = 1 x Λ n n log x 𝑂1
163 130 132 135 162 o1mul2 φ x 1 +∞ A n = 1 x Λ n n log x 𝑂1
164 130 132 remulcld φ x 1 +∞ A n = 1 x Λ n n log x
165 23 6 nndivred φ x 1 +∞ n 1 x log x n n
166 94 165 remulcld φ x 1 +∞ n 1 x 2 log x n n
167 99 166 resubcld φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n
168 8 167 remulcld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
169 4 168 fsumrecl φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
170 169 26 rerpdivcld φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
171 170 recnd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
172 169 recnd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
173 172 abscld φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
174 130 131 remulcld φ x 1 +∞ A n = 1 x Λ n n
175 100 106 subcld φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n
176 98 175 mulcld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
177 176 abscld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
178 4 177 fsumrecl φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
179 168 recnd φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
180 4 179 fsumabs φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
181 130 adantr φ x 1 +∞ n 1 x A
182 181 9 remulcld φ x 1 +∞ n 1 x A Λ n n
183 175 abscld φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n
184 181 6 nndivred φ x 1 +∞ n 1 x A n
185 vmage0 n 0 Λ n
186 6 185 syl φ x 1 +∞ n 1 x 0 Λ n
187 108 109 103 91 104 divdiv2d φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x n = m = 1 x n Λ m log m + ψ x n m n x
188 108 103 109 91 div23d φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m n x = m = 1 x n Λ m log m + ψ x n m x n
189 187 188 eqtrd φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x n = m = 1 x n Λ m log m + ψ x n m x n
190 101 105 103 mulassd φ x 1 +∞ n 1 x 2 log x n n n = 2 log x n n n
191 102 103 104 divcan1d φ x 1 +∞ n 1 x log x n n n = log x n
192 191 oveq2d φ x 1 +∞ n 1 x 2 log x n n n = 2 log x n
193 190 192 eqtr2d φ x 1 +∞ n 1 x 2 log x n = 2 log x n n n
194 189 193 oveq12d φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x n 2 log x n = m = 1 x n Λ m log m + ψ x n m x n 2 log x n n n
195 100 106 103 subdird φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n n = m = 1 x n Λ m log m + ψ x n m x n 2 log x n n n
196 194 195 eqtr4d φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x n 2 log x n = m = 1 x n Λ m log m + ψ x n m x 2 log x n n n
197 196 fveq2d φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x n 2 log x n = m = 1 x n Λ m log m + ψ x n m x 2 log x n n n
198 175 103 absmuld φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n n = m = 1 x n Λ m log m + ψ x n m x 2 log x n n n
199 6 nnred φ x 1 +∞ n 1 x n
200 21 rpge0d φ x 1 +∞ n 1 x 0 n
201 199 200 absidd φ x 1 +∞ n 1 x n = n
202 201 oveq2d φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n n = m = 1 x n Λ m log m + ψ x n m x 2 log x n n n
203 197 198 202 3eqtrd φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x n 2 log x n = m = 1 x n Λ m log m + ψ x n m x 2 log x n n n
204 fveq2 i = m Λ i = Λ m
205 fveq2 i = m log i = log m
206 oveq2 i = m y i = y m
207 206 fveq2d i = m ψ y i = ψ y m
208 205 207 oveq12d i = m log i + ψ y i = log m + ψ y m
209 204 208 oveq12d i = m Λ i log i + ψ y i = Λ m log m + ψ y m
210 209 cbvsumv i = 1 y Λ i log i + ψ y i = m = 1 y Λ m log m + ψ y m
211 fveq2 y = x n y = x n
212 211 oveq2d y = x n 1 y = 1 x n
213 fvoveq1 y = x n ψ y m = ψ x n m
214 213 oveq2d y = x n log m + ψ y m = log m + ψ x n m
215 214 oveq2d y = x n Λ m log m + ψ y m = Λ m log m + ψ x n m
216 215 adantr y = x n m 1 y Λ m log m + ψ y m = Λ m log m + ψ x n m
217 212 216 sumeq12dv y = x n m = 1 y Λ m log m + ψ y m = m = 1 x n Λ m log m + ψ x n m
218 210 217 eqtrid y = x n i = 1 y Λ i log i + ψ y i = m = 1 x n Λ m log m + ψ x n m
219 id y = x n y = x n
220 218 219 oveq12d y = x n i = 1 y Λ i log i + ψ y i y = m = 1 x n Λ m log m + ψ x n m x n
221 fveq2 y = x n log y = log x n
222 221 oveq2d y = x n 2 log y = 2 log x n
223 220 222 oveq12d y = x n i = 1 y Λ i log i + ψ y i y 2 log y = m = 1 x n Λ m log m + ψ x n m x n 2 log x n
224 223 fveq2d y = x n i = 1 y Λ i log i + ψ y i y 2 log y = m = 1 x n Λ m log m + ψ x n m x n 2 log x n
225 224 breq1d y = x n i = 1 y Λ i log i + ψ y i y 2 log y A m = 1 x n Λ m log m + ψ x n m x n 2 log x n A
226 2 ad2antrr φ x 1 +∞ n 1 x y 1 +∞ i = 1 y Λ i log i + ψ y i y 2 log y A
227 103 mulid2d φ x 1 +∞ n 1 x 1 n = n
228 fznnfl x n 1 x n n x
229 11 228 syl φ x 1 +∞ n 1 x n n x
230 229 simplbda φ x 1 +∞ n 1 x n x
231 227 230 eqbrtrd φ x 1 +∞ n 1 x 1 n x
232 1red φ x 1 +∞ n 1 x 1
233 232 59 21 lemuldivd φ x 1 +∞ n 1 x 1 n x 1 x n
234 231 233 mpbid φ x 1 +∞ n 1 x 1 x n
235 1re 1
236 elicopnf 1 x n 1 +∞ x n 1 x n
237 235 236 ax-mp x n 1 +∞ x n 1 x n
238 60 234 237 sylanbrc φ x 1 +∞ n 1 x x n 1 +∞
239 225 226 238 rspcdva φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x n 2 log x n A
240 203 239 eqbrtrrd φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n n A
241 183 181 21 lemuldivd φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n n A m = 1 x n Λ m log m + ψ x n m x 2 log x n n A n
242 240 241 mpbid φ x 1 +∞ n 1 x m = 1 x n Λ m log m + ψ x n m x 2 log x n n A n
243 183 184 8 186 242 lemul2ad φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n Λ n A n
244 98 175 absmuld φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n = Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
245 8 186 absidd φ x 1 +∞ n 1 x Λ n = Λ n
246 245 oveq1d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n = Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
247 244 246 eqtrd φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n = Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n
248 133 ad2antrr φ x 1 +∞ n 1 x A
249 248 98 103 104 div12d φ x 1 +∞ n 1 x A Λ n n = Λ n A n
250 243 247 249 3brtr4d φ x 1 +∞ n 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n A Λ n n
251 4 177 182 250 fsumle φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n n = 1 x A Λ n n
252 133 adantr φ x 1 +∞ A
253 9 recnd φ x 1 +∞ n 1 x Λ n n
254 4 252 253 fsummulc2 φ x 1 +∞ A n = 1 x Λ n n = n = 1 x A Λ n n
255 251 254 breqtrrd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n A n = 1 x Λ n n
256 173 178 174 180 255 letrd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n A n = 1 x Λ n n
257 173 174 26 256 lediv1dd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x A n = 1 x Λ n n log x
258 252 141 33 75 divassd φ x 1 +∞ A n = 1 x Λ n n log x = A n = 1 x Λ n n log x
259 257 258 breqtrd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x A n = 1 x Λ n n log x
260 172 33 75 absdivd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
261 26 rpge0d φ x 1 +∞ 0 log x
262 29 261 absidd φ x 1 +∞ log x = log x
263 262 oveq2d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
264 260 263 eqtrd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x = n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x
265 129 rpge0d φ x 1 +∞ 0 A
266 8 21 186 divge0d φ x 1 +∞ n 1 x 0 Λ n n
267 4 9 266 fsumge0 φ x 1 +∞ 0 n = 1 x Λ n n
268 131 26 267 divge0d φ x 1 +∞ 0 n = 1 x Λ n n log x
269 130 132 265 268 mulge0d φ x 1 +∞ 0 A n = 1 x Λ n n log x
270 164 269 absidd φ x 1 +∞ A n = 1 x Λ n n log x = A n = 1 x Λ n n log x
271 259 264 270 3brtr4d φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x A n = 1 x Λ n n log x
272 271 adantrr φ x 1 +∞ 1 x n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x A n = 1 x Λ n n log x
273 128 163 164 171 272 o1le φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x 2 log x n n log x 𝑂1
274 127 273 eqeltrd φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x - log x - 2 n = 1 x Λ n n log x n log x log x 𝑂1
275 73 78 274 o1dif φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x 𝑂1 x 1 +∞ 2 n = 1 x Λ n n log x n log x log x 𝑂1
276 51 275 mpbird φ x 1 +∞ n = 1 x Λ n m = 1 x n Λ m log m + ψ x n m x log x log x 𝑂1