| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sqwvfoura.t |
⊢ 𝑇 = ( 2 · π ) |
| 2 |
|
sqwvfoura.f |
⊢ 𝐹 = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
| 3 |
|
sqwvfoura.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 4 |
|
pire |
⊢ π ∈ ℝ |
| 5 |
4
|
renegcli |
⊢ - π ∈ ℝ |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → - π ∈ ℝ ) |
| 7 |
4
|
a1i |
⊢ ( 𝜑 → π ∈ ℝ ) |
| 8 |
|
0re |
⊢ 0 ∈ ℝ |
| 9 |
|
negpilt0 |
⊢ - π < 0 |
| 10 |
5 8 9
|
ltleii |
⊢ - π ≤ 0 |
| 11 |
|
pipos |
⊢ 0 < π |
| 12 |
8 4 11
|
ltleii |
⊢ 0 ≤ π |
| 13 |
5 4
|
elicc2i |
⊢ ( 0 ∈ ( - π [,] π ) ↔ ( 0 ∈ ℝ ∧ - π ≤ 0 ∧ 0 ≤ π ) ) |
| 14 |
8 10 12 13
|
mpbir3an |
⊢ 0 ∈ ( - π [,] π ) |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 0 ∈ ( - π [,] π ) ) |
| 16 |
|
1red |
⊢ ( 𝑥 ∈ ℝ → 1 ∈ ℝ ) |
| 17 |
16
|
renegcld |
⊢ ( 𝑥 ∈ ℝ → - 1 ∈ ℝ ) |
| 18 |
16 17
|
ifcld |
⊢ ( 𝑥 ∈ ℝ → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ∈ ℝ ) |
| 19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ∈ ℝ ) |
| 20 |
19 2
|
fmptd |
⊢ ( 𝜑 → 𝐹 : ℝ ⟶ ℝ ) |
| 21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → 𝐹 : ℝ ⟶ ℝ ) |
| 22 |
|
elioore |
⊢ ( 𝑥 ∈ ( - π (,) π ) → 𝑥 ∈ ℝ ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → 𝑥 ∈ ℝ ) |
| 24 |
21 23
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) |
| 25 |
3
|
nn0red |
⊢ ( 𝜑 → 𝑁 ∈ ℝ ) |
| 26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → 𝑁 ∈ ℝ ) |
| 27 |
26 23
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
| 28 |
27
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
| 29 |
24 28
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ℝ ) |
| 30 |
29
|
recnd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ℂ ) |
| 31 |
|
elioore |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 ∈ ℝ ) |
| 32 |
2
|
fvmpt2 |
⊢ ( ( 𝑥 ∈ ℝ ∧ if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
| 33 |
31 18 32
|
syl2anc2 |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
| 34 |
4
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π ∈ ℝ ) |
| 35 |
|
2rp |
⊢ 2 ∈ ℝ+ |
| 36 |
|
pirp |
⊢ π ∈ ℝ+ |
| 37 |
|
rpmulcl |
⊢ ( ( 2 ∈ ℝ+ ∧ π ∈ ℝ+ ) → ( 2 · π ) ∈ ℝ+ ) |
| 38 |
35 36 37
|
mp2an |
⊢ ( 2 · π ) ∈ ℝ+ |
| 39 |
1 38
|
eqeltri |
⊢ 𝑇 ∈ ℝ+ |
| 40 |
39
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑇 ∈ ℝ+ ) |
| 41 |
31 40
|
modcld |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 mod 𝑇 ) ∈ ℝ ) |
| 42 |
|
picn |
⊢ π ∈ ℂ |
| 43 |
42
|
2timesi |
⊢ ( 2 · π ) = ( π + π ) |
| 44 |
1 43
|
eqtri |
⊢ 𝑇 = ( π + π ) |
| 45 |
44
|
oveq2i |
⊢ ( - π + 𝑇 ) = ( - π + ( π + π ) ) |
| 46 |
5
|
recni |
⊢ - π ∈ ℂ |
| 47 |
46 42 42
|
addassi |
⊢ ( ( - π + π ) + π ) = ( - π + ( π + π ) ) |
| 48 |
42
|
negidi |
⊢ ( π + - π ) = 0 |
| 49 |
42 46 48
|
addcomli |
⊢ ( - π + π ) = 0 |
| 50 |
49
|
oveq1i |
⊢ ( ( - π + π ) + π ) = ( 0 + π ) |
| 51 |
42
|
addlidi |
⊢ ( 0 + π ) = π |
| 52 |
50 51
|
eqtri |
⊢ ( ( - π + π ) + π ) = π |
| 53 |
45 47 52
|
3eqtr2ri |
⊢ π = ( - π + 𝑇 ) |
| 54 |
5
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → - π ∈ ℝ ) |
| 55 |
|
2re |
⊢ 2 ∈ ℝ |
| 56 |
55 4
|
remulcli |
⊢ ( 2 · π ) ∈ ℝ |
| 57 |
1 56
|
eqeltri |
⊢ 𝑇 ∈ ℝ |
| 58 |
57
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑇 ∈ ℝ ) |
| 59 |
5
|
rexri |
⊢ - π ∈ ℝ* |
| 60 |
59
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → - π ∈ ℝ* ) |
| 61 |
|
0red |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 ∈ ℝ ) |
| 62 |
61
|
rexrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 ∈ ℝ* ) |
| 63 |
|
id |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 ∈ ( - π (,) 0 ) ) |
| 64 |
|
ioogtlb |
⊢ ( ( - π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑥 ∈ ( - π (,) 0 ) ) → - π < 𝑥 ) |
| 65 |
60 62 63 64
|
syl3anc |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → - π < 𝑥 ) |
| 66 |
54 31 58 65
|
ltadd1dd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( - π + 𝑇 ) < ( 𝑥 + 𝑇 ) ) |
| 67 |
53 66
|
eqbrtrid |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π < ( 𝑥 + 𝑇 ) ) |
| 68 |
57
|
recni |
⊢ 𝑇 ∈ ℂ |
| 69 |
68
|
mullidi |
⊢ ( 1 · 𝑇 ) = 𝑇 |
| 70 |
69
|
eqcomi |
⊢ 𝑇 = ( 1 · 𝑇 ) |
| 71 |
70
|
oveq2i |
⊢ ( 𝑥 + 𝑇 ) = ( 𝑥 + ( 1 · 𝑇 ) ) |
| 72 |
71
|
oveq1i |
⊢ ( ( 𝑥 + 𝑇 ) mod 𝑇 ) = ( ( 𝑥 + ( 1 · 𝑇 ) ) mod 𝑇 ) |
| 73 |
31 58
|
readdcld |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) ∈ ℝ ) |
| 74 |
11
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 < π ) |
| 75 |
61 34 73 74 67
|
lttrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 < ( 𝑥 + 𝑇 ) ) |
| 76 |
61 73 75
|
ltled |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 0 ≤ ( 𝑥 + 𝑇 ) ) |
| 77 |
|
iooltub |
⊢ ( ( - π ∈ ℝ* ∧ 0 ∈ ℝ* ∧ 𝑥 ∈ ( - π (,) 0 ) ) → 𝑥 < 0 ) |
| 78 |
60 62 63 77
|
syl3anc |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 < 0 ) |
| 79 |
31 61 58 78
|
ltadd1dd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) < ( 0 + 𝑇 ) ) |
| 80 |
68
|
a1i |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑇 ∈ ℂ ) |
| 81 |
80
|
addlidd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 0 + 𝑇 ) = 𝑇 ) |
| 82 |
79 81
|
breqtrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) < 𝑇 ) |
| 83 |
|
modid |
⊢ ( ( ( ( 𝑥 + 𝑇 ) ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) ∧ ( 0 ≤ ( 𝑥 + 𝑇 ) ∧ ( 𝑥 + 𝑇 ) < 𝑇 ) ) → ( ( 𝑥 + 𝑇 ) mod 𝑇 ) = ( 𝑥 + 𝑇 ) ) |
| 84 |
73 40 76 82 83
|
syl22anc |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( ( 𝑥 + 𝑇 ) mod 𝑇 ) = ( 𝑥 + 𝑇 ) ) |
| 85 |
|
1zzd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 1 ∈ ℤ ) |
| 86 |
|
modcyc |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ∧ 1 ∈ ℤ ) → ( ( 𝑥 + ( 1 · 𝑇 ) ) mod 𝑇 ) = ( 𝑥 mod 𝑇 ) ) |
| 87 |
31 40 85 86
|
syl3anc |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( ( 𝑥 + ( 1 · 𝑇 ) ) mod 𝑇 ) = ( 𝑥 mod 𝑇 ) ) |
| 88 |
72 84 87
|
3eqtr3a |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝑥 + 𝑇 ) = ( 𝑥 mod 𝑇 ) ) |
| 89 |
67 88
|
breqtrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → π < ( 𝑥 mod 𝑇 ) ) |
| 90 |
34 41 89
|
ltnsymd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ¬ ( 𝑥 mod 𝑇 ) < π ) |
| 91 |
90
|
iffalsed |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) = - 1 ) |
| 92 |
33 91
|
eqtrd |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 𝐹 ‘ 𝑥 ) = - 1 ) |
| 93 |
92
|
oveq1d |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) = ( - 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) |
| 94 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) = ( - 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) |
| 95 |
94
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( - 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) ) |
| 96 |
|
1cnd |
⊢ ( 𝜑 → 1 ∈ ℂ ) |
| 97 |
96
|
negcld |
⊢ ( 𝜑 → - 1 ∈ ℂ ) |
| 98 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → 𝑁 ∈ ℝ ) |
| 99 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → 𝑥 ∈ ℝ ) |
| 100 |
98 99
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
| 101 |
100
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
| 102 |
|
ioossicc |
⊢ ( - π (,) 0 ) ⊆ ( - π [,] 0 ) |
| 103 |
102
|
a1i |
⊢ ( 𝜑 → ( - π (,) 0 ) ⊆ ( - π [,] 0 ) ) |
| 104 |
|
ioombl |
⊢ ( - π (,) 0 ) ∈ dom vol |
| 105 |
104
|
a1i |
⊢ ( 𝜑 → ( - π (,) 0 ) ∈ dom vol ) |
| 106 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → 𝑁 ∈ ℝ ) |
| 107 |
|
iccssre |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ) → ( - π [,] 0 ) ⊆ ℝ ) |
| 108 |
5 8 107
|
mp2an |
⊢ ( - π [,] 0 ) ⊆ ℝ |
| 109 |
108
|
sseli |
⊢ ( 𝑥 ∈ ( - π [,] 0 ) → 𝑥 ∈ ℝ ) |
| 110 |
109
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → 𝑥 ∈ ℝ ) |
| 111 |
106 110
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
| 112 |
111
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( - π [,] 0 ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
| 113 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
| 114 |
|
coscn |
⊢ cos ∈ ( ℂ –cn→ ℂ ) |
| 115 |
114
|
a1i |
⊢ ( 𝜑 → cos ∈ ( ℂ –cn→ ℂ ) ) |
| 116 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
| 117 |
108 116
|
sstri |
⊢ ( - π [,] 0 ) ⊆ ℂ |
| 118 |
117
|
a1i |
⊢ ( 𝜑 → ( - π [,] 0 ) ⊆ ℂ ) |
| 119 |
25
|
recnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 120 |
|
ssid |
⊢ ℂ ⊆ ℂ |
| 121 |
120
|
a1i |
⊢ ( 𝜑 → ℂ ⊆ ℂ ) |
| 122 |
118 119 121
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ 𝑁 ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
| 123 |
118 121
|
idcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ 𝑥 ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
| 124 |
122 123
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( 𝑁 · 𝑥 ) ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
| 125 |
115 124
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) |
| 126 |
|
cniccibl |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ∧ ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( - π [,] 0 ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
| 127 |
6 113 125 126
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π [,] 0 ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
| 128 |
103 105 112 127
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
| 129 |
97 101 128
|
iblmulc2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( - 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 130 |
95 129
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( - π (,) 0 ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 131 |
|
elioore |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℝ ) |
| 132 |
131 18 32
|
syl2anc2 |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝐹 ‘ 𝑥 ) = if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) ) |
| 133 |
39
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑇 ∈ ℝ+ ) |
| 134 |
|
0red |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 ∈ ℝ ) |
| 135 |
134
|
rexrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 ∈ ℝ* ) |
| 136 |
4
|
rexri |
⊢ π ∈ ℝ* |
| 137 |
136
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → π ∈ ℝ* ) |
| 138 |
|
id |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ( 0 (,) π ) ) |
| 139 |
|
ioogtlb |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑥 ∈ ( 0 (,) π ) ) → 0 < 𝑥 ) |
| 140 |
135 137 138 139
|
syl3anc |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 < 𝑥 ) |
| 141 |
134 131 140
|
ltled |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 0 ≤ 𝑥 ) |
| 142 |
4
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → π ∈ ℝ ) |
| 143 |
57
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑇 ∈ ℝ ) |
| 144 |
|
iooltub |
⊢ ( ( 0 ∈ ℝ* ∧ π ∈ ℝ* ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑥 < π ) |
| 145 |
135 137 138 144
|
syl3anc |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 < π ) |
| 146 |
|
2timesgt |
⊢ ( π ∈ ℝ+ → π < ( 2 · π ) ) |
| 147 |
36 146
|
ax-mp |
⊢ π < ( 2 · π ) |
| 148 |
147 1
|
breqtrri |
⊢ π < 𝑇 |
| 149 |
148
|
a1i |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → π < 𝑇 ) |
| 150 |
131 142 143 145 149
|
lttrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 < 𝑇 ) |
| 151 |
|
modid |
⊢ ( ( ( 𝑥 ∈ ℝ ∧ 𝑇 ∈ ℝ+ ) ∧ ( 0 ≤ 𝑥 ∧ 𝑥 < 𝑇 ) ) → ( 𝑥 mod 𝑇 ) = 𝑥 ) |
| 152 |
131 133 141 150 151
|
syl22anc |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝑥 mod 𝑇 ) = 𝑥 ) |
| 153 |
152 145
|
eqbrtrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝑥 mod 𝑇 ) < π ) |
| 154 |
153
|
iftrued |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → if ( ( 𝑥 mod 𝑇 ) < π , 1 , - 1 ) = 1 ) |
| 155 |
132 154
|
eqtrd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( 𝐹 ‘ 𝑥 ) = 1 ) |
| 156 |
155
|
oveq1d |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) = ( 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) |
| 157 |
156
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) = ( 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) |
| 158 |
157
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 0 (,) π ) ↦ ( 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) ) |
| 159 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑁 ∈ ℝ ) |
| 160 |
131
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑥 ∈ ℝ ) |
| 161 |
159 160
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
| 162 |
161
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
| 163 |
|
ioossicc |
⊢ ( 0 (,) π ) ⊆ ( 0 [,] π ) |
| 164 |
163
|
a1i |
⊢ ( 𝜑 → ( 0 (,) π ) ⊆ ( 0 [,] π ) ) |
| 165 |
|
ioombl |
⊢ ( 0 (,) π ) ∈ dom vol |
| 166 |
165
|
a1i |
⊢ ( 𝜑 → ( 0 (,) π ) ∈ dom vol ) |
| 167 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → 𝑁 ∈ ℝ ) |
| 168 |
|
iccssre |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( 0 [,] π ) ⊆ ℝ ) |
| 169 |
8 4 168
|
mp2an |
⊢ ( 0 [,] π ) ⊆ ℝ |
| 170 |
169
|
sseli |
⊢ ( 𝑥 ∈ ( 0 [,] π ) → 𝑥 ∈ ℝ ) |
| 171 |
170
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → 𝑥 ∈ ℝ ) |
| 172 |
167 171
|
remulcld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → ( 𝑁 · 𝑥 ) ∈ ℝ ) |
| 173 |
172
|
recoscld |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 0 [,] π ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) ∈ ℝ ) |
| 174 |
169 116
|
sstri |
⊢ ( 0 [,] π ) ⊆ ℂ |
| 175 |
174
|
a1i |
⊢ ( 𝜑 → ( 0 [,] π ) ⊆ ℂ ) |
| 176 |
175 119 121
|
constcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ 𝑁 ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
| 177 |
175 121
|
idcncfg |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ 𝑥 ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
| 178 |
176 177
|
mulcncf |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( 𝑁 · 𝑥 ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
| 179 |
115 178
|
cncfmpt1f |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) |
| 180 |
|
cniccibl |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ ( 𝑥 ∈ ( 0 [,] π ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ ( ( 0 [,] π ) –cn→ ℂ ) ) → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
| 181 |
113 7 179 180
|
syl3anc |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 [,] π ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
| 182 |
164 166 173 181
|
iblss |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ∈ 𝐿1 ) |
| 183 |
96 162 182
|
iblmulc2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 184 |
158 183
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 0 (,) π ) ↦ ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) ) ∈ 𝐿1 ) |
| 185 |
6 7 15 30 130 184
|
itgsplitioo |
⊢ ( 𝜑 → ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) ) |
| 186 |
185
|
oveq1d |
⊢ ( 𝜑 → ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 / π ) = ( ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) / π ) ) |
| 187 |
94
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ∫ ( - π (,) 0 ) ( - 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 188 |
97 101 128
|
itgmulc2 |
⊢ ( 𝜑 → ( - 1 · ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = ∫ ( - π (,) 0 ) ( - 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 189 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 190 |
|
ioosscn |
⊢ ( - π (,) 0 ) ⊆ ℂ |
| 191 |
190
|
sseli |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → 𝑥 ∈ ℂ ) |
| 192 |
191
|
mul02d |
⊢ ( 𝑥 ∈ ( - π (,) 0 ) → ( 0 · 𝑥 ) = 0 ) |
| 193 |
189 192
|
sylan9eq |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( 𝑁 · 𝑥 ) = 0 ) |
| 194 |
193
|
fveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) = ( cos ‘ 0 ) ) |
| 195 |
|
cos0 |
⊢ ( cos ‘ 0 ) = 1 |
| 196 |
194 195
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) = 1 ) |
| 197 |
196
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑥 ∈ ( - π (,) 0 ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) = 1 ) |
| 198 |
197
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ∫ ( - π (,) 0 ) 1 d 𝑥 ) |
| 199 |
|
ioovolcl |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ) → ( vol ‘ ( - π (,) 0 ) ) ∈ ℝ ) |
| 200 |
5 8 199
|
mp2an |
⊢ ( vol ‘ ( - π (,) 0 ) ) ∈ ℝ |
| 201 |
200
|
a1i |
⊢ ( 𝜑 → ( vol ‘ ( - π (,) 0 ) ) ∈ ℝ ) |
| 202 |
|
itgconst |
⊢ ( ( ( - π (,) 0 ) ∈ dom vol ∧ ( vol ‘ ( - π (,) 0 ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ∫ ( - π (,) 0 ) 1 d 𝑥 = ( 1 · ( vol ‘ ( - π (,) 0 ) ) ) ) |
| 203 |
105 201 96 202
|
syl3anc |
⊢ ( 𝜑 → ∫ ( - π (,) 0 ) 1 d 𝑥 = ( 1 · ( vol ‘ ( - π (,) 0 ) ) ) ) |
| 204 |
203
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ∫ ( - π (,) 0 ) 1 d 𝑥 = ( 1 · ( vol ‘ ( - π (,) 0 ) ) ) ) |
| 205 |
|
volioo |
⊢ ( ( - π ∈ ℝ ∧ 0 ∈ ℝ ∧ - π ≤ 0 ) → ( vol ‘ ( - π (,) 0 ) ) = ( 0 − - π ) ) |
| 206 |
5 8 10 205
|
mp3an |
⊢ ( vol ‘ ( - π (,) 0 ) ) = ( 0 − - π ) |
| 207 |
|
0cn |
⊢ 0 ∈ ℂ |
| 208 |
207 42
|
subnegi |
⊢ ( 0 − - π ) = ( 0 + π ) |
| 209 |
206 208 51
|
3eqtri |
⊢ ( vol ‘ ( - π (,) 0 ) ) = π |
| 210 |
209
|
a1i |
⊢ ( 𝜑 → ( vol ‘ ( - π (,) 0 ) ) = π ) |
| 211 |
210
|
oveq2d |
⊢ ( 𝜑 → ( 1 · ( vol ‘ ( - π (,) 0 ) ) ) = ( 1 · π ) ) |
| 212 |
42
|
a1i |
⊢ ( 𝜑 → π ∈ ℂ ) |
| 213 |
212
|
mullidd |
⊢ ( 𝜑 → ( 1 · π ) = π ) |
| 214 |
211 213
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ( vol ‘ ( - π (,) 0 ) ) ) = π ) |
| 215 |
214
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 1 · ( vol ‘ ( - π (,) 0 ) ) ) = π ) |
| 216 |
198 204 215
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = π ) |
| 217 |
216
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( - 1 · ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = ( - 1 · π ) ) |
| 218 |
42
|
mulm1i |
⊢ ( - 1 · π ) = - π |
| 219 |
218
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( - 1 · π ) = - π ) |
| 220 |
|
iftrue |
⊢ ( 𝑁 = 0 → if ( 𝑁 = 0 , - π , 0 ) = - π ) |
| 221 |
220
|
eqcomd |
⊢ ( 𝑁 = 0 → - π = if ( 𝑁 = 0 , - π , 0 ) ) |
| 222 |
221
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → - π = if ( 𝑁 = 0 , - π , 0 ) ) |
| 223 |
217 219 222
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( - 1 · ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = if ( 𝑁 = 0 , - π , 0 ) ) |
| 224 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → 𝑁 ∈ ℝ ) |
| 225 |
3
|
nn0ge0d |
⊢ ( 𝜑 → 0 ≤ 𝑁 ) |
| 226 |
225
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → 0 ≤ 𝑁 ) |
| 227 |
|
neqne |
⊢ ( ¬ 𝑁 = 0 → 𝑁 ≠ 0 ) |
| 228 |
227
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → 𝑁 ≠ 0 ) |
| 229 |
224 226 228
|
ne0gt0d |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → 0 < 𝑁 ) |
| 230 |
|
1cnd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 1 ∈ ℂ ) |
| 231 |
230
|
negcld |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → - 1 ∈ ℂ ) |
| 232 |
231
|
mul01d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( - 1 · 0 ) = 0 ) |
| 233 |
119
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℂ ) |
| 234 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → - π ∈ ℝ ) |
| 235 |
|
0red |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 0 ∈ ℝ ) |
| 236 |
10
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → - π ≤ 0 ) |
| 237 |
|
simpr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 0 < 𝑁 ) |
| 238 |
237
|
gt0ne0d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 𝑁 ≠ 0 ) |
| 239 |
233 234 235 236 238
|
itgcoscmulx |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ( ( ( sin ‘ ( 𝑁 · 0 ) ) − ( sin ‘ ( 𝑁 · - π ) ) ) / 𝑁 ) ) |
| 240 |
119
|
mul01d |
⊢ ( 𝜑 → ( 𝑁 · 0 ) = 0 ) |
| 241 |
240
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · 0 ) ) = ( sin ‘ 0 ) ) |
| 242 |
|
sin0 |
⊢ ( sin ‘ 0 ) = 0 |
| 243 |
241 242
|
eqtrdi |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · 0 ) ) = 0 ) |
| 244 |
119 212
|
mulneg2d |
⊢ ( 𝜑 → ( 𝑁 · - π ) = - ( 𝑁 · π ) ) |
| 245 |
244
|
fveq2d |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · - π ) ) = ( sin ‘ - ( 𝑁 · π ) ) ) |
| 246 |
119 212
|
mulcld |
⊢ ( 𝜑 → ( 𝑁 · π ) ∈ ℂ ) |
| 247 |
|
sinneg |
⊢ ( ( 𝑁 · π ) ∈ ℂ → ( sin ‘ - ( 𝑁 · π ) ) = - ( sin ‘ ( 𝑁 · π ) ) ) |
| 248 |
246 247
|
syl |
⊢ ( 𝜑 → ( sin ‘ - ( 𝑁 · π ) ) = - ( sin ‘ ( 𝑁 · π ) ) ) |
| 249 |
245 248
|
eqtrd |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · - π ) ) = - ( sin ‘ ( 𝑁 · π ) ) ) |
| 250 |
243 249
|
oveq12d |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · 0 ) ) − ( sin ‘ ( 𝑁 · - π ) ) ) = ( 0 − - ( sin ‘ ( 𝑁 · π ) ) ) ) |
| 251 |
|
0cnd |
⊢ ( 𝜑 → 0 ∈ ℂ ) |
| 252 |
246
|
sincld |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · π ) ) ∈ ℂ ) |
| 253 |
251 252
|
subnegd |
⊢ ( 𝜑 → ( 0 − - ( sin ‘ ( 𝑁 · π ) ) ) = ( 0 + ( sin ‘ ( 𝑁 · π ) ) ) ) |
| 254 |
252
|
addlidd |
⊢ ( 𝜑 → ( 0 + ( sin ‘ ( 𝑁 · π ) ) ) = ( sin ‘ ( 𝑁 · π ) ) ) |
| 255 |
250 253 254
|
3eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · 0 ) ) − ( sin ‘ ( 𝑁 · - π ) ) ) = ( sin ‘ ( 𝑁 · π ) ) ) |
| 256 |
255
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( ( sin ‘ ( 𝑁 · 0 ) ) − ( sin ‘ ( 𝑁 · - π ) ) ) = ( sin ‘ ( 𝑁 · π ) ) ) |
| 257 |
256
|
oveq1d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( ( ( sin ‘ ( 𝑁 · 0 ) ) − ( sin ‘ ( 𝑁 · - π ) ) ) / 𝑁 ) = ( ( sin ‘ ( 𝑁 · π ) ) / 𝑁 ) ) |
| 258 |
3
|
nn0zd |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 259 |
|
sinkpi |
⊢ ( 𝑁 ∈ ℤ → ( sin ‘ ( 𝑁 · π ) ) = 0 ) |
| 260 |
258 259
|
syl |
⊢ ( 𝜑 → ( sin ‘ ( 𝑁 · π ) ) = 0 ) |
| 261 |
260
|
oveq1d |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · π ) ) / 𝑁 ) = ( 0 / 𝑁 ) ) |
| 262 |
261
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( ( sin ‘ ( 𝑁 · π ) ) / 𝑁 ) = ( 0 / 𝑁 ) ) |
| 263 |
233 238
|
div0d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( 0 / 𝑁 ) = 0 ) |
| 264 |
262 263
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( ( sin ‘ ( 𝑁 · π ) ) / 𝑁 ) = 0 ) |
| 265 |
239 257 264
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = 0 ) |
| 266 |
265
|
oveq2d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( - 1 · ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = ( - 1 · 0 ) ) |
| 267 |
238
|
neneqd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ¬ 𝑁 = 0 ) |
| 268 |
267
|
iffalsed |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → if ( 𝑁 = 0 , - π , 0 ) = 0 ) |
| 269 |
232 266 268
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( - 1 · ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = if ( 𝑁 = 0 , - π , 0 ) ) |
| 270 |
229 269
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → ( - 1 · ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = if ( 𝑁 = 0 , - π , 0 ) ) |
| 271 |
223 270
|
pm2.61dan |
⊢ ( 𝜑 → ( - 1 · ∫ ( - π (,) 0 ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = if ( 𝑁 = 0 , - π , 0 ) ) |
| 272 |
187 188 271
|
3eqtr2d |
⊢ ( 𝜑 → ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = if ( 𝑁 = 0 , - π , 0 ) ) |
| 273 |
157
|
itgeq2dv |
⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = ∫ ( 0 (,) π ) ( 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 274 |
96 162 182
|
itgmulc2 |
⊢ ( 𝜑 → ( 1 · ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = ∫ ( 0 (,) π ) ( 1 · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) |
| 275 |
162 182
|
itgcl |
⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ∈ ℂ ) |
| 276 |
275
|
mullidd |
⊢ ( 𝜑 → ( 1 · ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) |
| 277 |
|
simpl |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑁 = 0 ) |
| 278 |
277
|
oveq1d |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 𝑁 · 𝑥 ) = ( 0 · 𝑥 ) ) |
| 279 |
131
|
recnd |
⊢ ( 𝑥 ∈ ( 0 (,) π ) → 𝑥 ∈ ℂ ) |
| 280 |
279
|
adantl |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → 𝑥 ∈ ℂ ) |
| 281 |
280
|
mul02d |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 0 · 𝑥 ) = 0 ) |
| 282 |
278 281
|
eqtrd |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( 𝑁 · 𝑥 ) = 0 ) |
| 283 |
282
|
fveq2d |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) = ( cos ‘ 0 ) ) |
| 284 |
283 195
|
eqtrdi |
⊢ ( ( 𝑁 = 0 ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) = 1 ) |
| 285 |
284
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑁 = 0 ) ∧ 𝑥 ∈ ( 0 (,) π ) ) → ( cos ‘ ( 𝑁 · 𝑥 ) ) = 1 ) |
| 286 |
285
|
itgeq2dv |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ∫ ( 0 (,) π ) 1 d 𝑥 ) |
| 287 |
|
ioovolcl |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ) → ( vol ‘ ( 0 (,) π ) ) ∈ ℝ ) |
| 288 |
8 4 287
|
mp2an |
⊢ ( vol ‘ ( 0 (,) π ) ) ∈ ℝ |
| 289 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 290 |
|
itgconst |
⊢ ( ( ( 0 (,) π ) ∈ dom vol ∧ ( vol ‘ ( 0 (,) π ) ) ∈ ℝ ∧ 1 ∈ ℂ ) → ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) ) |
| 291 |
165 288 289 290
|
mp3an |
⊢ ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) |
| 292 |
291
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ∫ ( 0 (,) π ) 1 d 𝑥 = ( 1 · ( vol ‘ ( 0 (,) π ) ) ) ) |
| 293 |
42
|
mullidi |
⊢ ( 1 · π ) = π |
| 294 |
|
volioo |
⊢ ( ( 0 ∈ ℝ ∧ π ∈ ℝ ∧ 0 ≤ π ) → ( vol ‘ ( 0 (,) π ) ) = ( π − 0 ) ) |
| 295 |
8 4 12 294
|
mp3an |
⊢ ( vol ‘ ( 0 (,) π ) ) = ( π − 0 ) |
| 296 |
42
|
subid1i |
⊢ ( π − 0 ) = π |
| 297 |
295 296
|
eqtri |
⊢ ( vol ‘ ( 0 (,) π ) ) = π |
| 298 |
297
|
oveq2i |
⊢ ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = ( 1 · π ) |
| 299 |
298
|
a1i |
⊢ ( 𝑁 = 0 → ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = ( 1 · π ) ) |
| 300 |
|
iftrue |
⊢ ( 𝑁 = 0 → if ( 𝑁 = 0 , π , 0 ) = π ) |
| 301 |
293 299 300
|
3eqtr4a |
⊢ ( 𝑁 = 0 → ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = if ( 𝑁 = 0 , π , 0 ) ) |
| 302 |
301
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ( 1 · ( vol ‘ ( 0 (,) π ) ) ) = if ( 𝑁 = 0 , π , 0 ) ) |
| 303 |
286 292 302
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑁 = 0 ) → ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = if ( 𝑁 = 0 , π , 0 ) ) |
| 304 |
260 243
|
oveq12d |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · π ) ) − ( sin ‘ ( 𝑁 · 0 ) ) ) = ( 0 − 0 ) ) |
| 305 |
251
|
subidd |
⊢ ( 𝜑 → ( 0 − 0 ) = 0 ) |
| 306 |
304 305
|
eqtrd |
⊢ ( 𝜑 → ( ( sin ‘ ( 𝑁 · π ) ) − ( sin ‘ ( 𝑁 · 0 ) ) ) = 0 ) |
| 307 |
306
|
oveq1d |
⊢ ( 𝜑 → ( ( ( sin ‘ ( 𝑁 · π ) ) − ( sin ‘ ( 𝑁 · 0 ) ) ) / 𝑁 ) = ( 0 / 𝑁 ) ) |
| 308 |
307
|
adantr |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( ( ( sin ‘ ( 𝑁 · π ) ) − ( sin ‘ ( 𝑁 · 0 ) ) ) / 𝑁 ) = ( 0 / 𝑁 ) ) |
| 309 |
308 263
|
eqtrd |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ( ( ( sin ‘ ( 𝑁 · π ) ) − ( sin ‘ ( 𝑁 · 0 ) ) ) / 𝑁 ) = 0 ) |
| 310 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → π ∈ ℝ ) |
| 311 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → 0 ≤ π ) |
| 312 |
233 235 310 311 238
|
itgcoscmulx |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = ( ( ( sin ‘ ( 𝑁 · π ) ) − ( sin ‘ ( 𝑁 · 0 ) ) ) / 𝑁 ) ) |
| 313 |
267
|
iffalsed |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → if ( 𝑁 = 0 , π , 0 ) = 0 ) |
| 314 |
309 312 313
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 0 < 𝑁 ) → ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = if ( 𝑁 = 0 , π , 0 ) ) |
| 315 |
229 314
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝑁 = 0 ) → ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = if ( 𝑁 = 0 , π , 0 ) ) |
| 316 |
303 315
|
pm2.61dan |
⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 = if ( 𝑁 = 0 , π , 0 ) ) |
| 317 |
276 316
|
eqtrd |
⊢ ( 𝜑 → ( 1 · ∫ ( 0 (,) π ) ( cos ‘ ( 𝑁 · 𝑥 ) ) d 𝑥 ) = if ( 𝑁 = 0 , π , 0 ) ) |
| 318 |
273 274 317
|
3eqtr2d |
⊢ ( 𝜑 → ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 = if ( 𝑁 = 0 , π , 0 ) ) |
| 319 |
272 318
|
oveq12d |
⊢ ( 𝜑 → ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) = ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) ) |
| 320 |
319
|
oveq1d |
⊢ ( 𝜑 → ( ( ∫ ( - π (,) 0 ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 + ∫ ( 0 (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 ) / π ) = ( ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) / π ) ) |
| 321 |
220 300
|
oveq12d |
⊢ ( 𝑁 = 0 → ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) = ( - π + π ) ) |
| 322 |
321 49
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) = 0 ) |
| 323 |
|
iffalse |
⊢ ( ¬ 𝑁 = 0 → if ( 𝑁 = 0 , - π , 0 ) = 0 ) |
| 324 |
|
iffalse |
⊢ ( ¬ 𝑁 = 0 → if ( 𝑁 = 0 , π , 0 ) = 0 ) |
| 325 |
323 324
|
oveq12d |
⊢ ( ¬ 𝑁 = 0 → ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) = ( 0 + 0 ) ) |
| 326 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
| 327 |
325 326
|
eqtrdi |
⊢ ( ¬ 𝑁 = 0 → ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) = 0 ) |
| 328 |
322 327
|
pm2.61i |
⊢ ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) = 0 |
| 329 |
328
|
oveq1i |
⊢ ( ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) / π ) = ( 0 / π ) |
| 330 |
8 11
|
gtneii |
⊢ π ≠ 0 |
| 331 |
42 330
|
div0i |
⊢ ( 0 / π ) = 0 |
| 332 |
329 331
|
eqtri |
⊢ ( ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) / π ) = 0 |
| 333 |
332
|
a1i |
⊢ ( 𝜑 → ( ( if ( 𝑁 = 0 , - π , 0 ) + if ( 𝑁 = 0 , π , 0 ) ) / π ) = 0 ) |
| 334 |
186 320 333
|
3eqtrd |
⊢ ( 𝜑 → ( ∫ ( - π (,) π ) ( ( 𝐹 ‘ 𝑥 ) · ( cos ‘ ( 𝑁 · 𝑥 ) ) ) d 𝑥 / π ) = 0 ) |