| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zringfrac.1 |
⊢ 𝑄 = ( ℂfld ↾s ℚ ) |
| 2 |
|
zringfrac.2 |
⊢ ∼ = ( ℤring ~RL ( ℤ ∖ { 0 } ) ) |
| 3 |
|
zringfrac.3 |
⊢ 𝐹 = ( 𝑞 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
| 4 |
1
|
qdrng |
⊢ 𝑄 ∈ DivRing |
| 5 |
|
drngring |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ Ring ) |
| 6 |
4 5
|
ax-mp |
⊢ 𝑄 ∈ Ring |
| 7 |
|
zringidom |
⊢ ℤring ∈ IDomn |
| 8 |
|
id |
⊢ ( ℤring ∈ IDomn → ℤring ∈ IDomn ) |
| 9 |
8
|
fracfld |
⊢ ( ℤring ∈ IDomn → ( Frac ‘ ℤring ) ∈ Field ) |
| 10 |
9
|
fldcrngd |
⊢ ( ℤring ∈ IDomn → ( Frac ‘ ℤring ) ∈ CRing ) |
| 11 |
10
|
crngringd |
⊢ ( ℤring ∈ IDomn → ( Frac ‘ ℤring ) ∈ Ring ) |
| 12 |
7 11
|
ax-mp |
⊢ ( Frac ‘ ℤring ) ∈ Ring |
| 13 |
6 12
|
pm3.2i |
⊢ ( 𝑄 ∈ Ring ∧ ( Frac ‘ ℤring ) ∈ Ring ) |
| 14 |
|
ringgrp |
⊢ ( 𝑄 ∈ Ring → 𝑄 ∈ Grp ) |
| 15 |
6 14
|
ax-mp |
⊢ 𝑄 ∈ Grp |
| 16 |
|
ringgrp |
⊢ ( ( Frac ‘ ℤring ) ∈ Ring → ( Frac ‘ ℤring ) ∈ Grp ) |
| 17 |
12 16
|
ax-mp |
⊢ ( Frac ‘ ℤring ) ∈ Grp |
| 18 |
15 17
|
pm3.2i |
⊢ ( 𝑄 ∈ Grp ∧ ( Frac ‘ ℤring ) ∈ Grp ) |
| 19 |
|
qnumcl |
⊢ ( 𝑞 ∈ ℚ → ( numer ‘ 𝑞 ) ∈ ℤ ) |
| 20 |
|
qdencl |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℕ ) |
| 21 |
20
|
nnzd |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ℤ ) |
| 22 |
20
|
nnne0d |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ≠ 0 ) |
| 23 |
21 22
|
eldifsnd |
⊢ ( 𝑞 ∈ ℚ → ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ) |
| 24 |
19 23
|
opelxpd |
⊢ ( 𝑞 ∈ ℚ → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∈ ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
| 25 |
2
|
ovexi |
⊢ ∼ ∈ V |
| 26 |
25
|
ecelqsi |
⊢ ( 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∈ ( ℤ × ( ℤ ∖ { 0 } ) ) → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ) |
| 27 |
24 26
|
syl |
⊢ ( 𝑞 ∈ ℚ → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ) |
| 28 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 29 |
|
zring0 |
⊢ 0 = ( 0g ‘ ℤring ) |
| 30 |
|
zringmulr |
⊢ · = ( .r ‘ ℤring ) |
| 31 |
|
eqid |
⊢ ( -g ‘ ℤring ) = ( -g ‘ ℤring ) |
| 32 |
|
eqid |
⊢ ( ℤ × ( ℤ ∖ { 0 } ) ) = ( ℤ × ( ℤ ∖ { 0 } ) ) |
| 33 |
|
fracval |
⊢ ( Frac ‘ ℤring ) = ( ℤring RLocal ( RLReg ‘ ℤring ) ) |
| 34 |
8
|
idomdomd |
⊢ ( ℤring ∈ IDomn → ℤring ∈ Domn ) |
| 35 |
7 34
|
ax-mp |
⊢ ℤring ∈ Domn |
| 36 |
|
eqid |
⊢ ( RLReg ‘ ℤring ) = ( RLReg ‘ ℤring ) |
| 37 |
28 36 29
|
isdomn6 |
⊢ ( ℤring ∈ Domn ↔ ( ℤring ∈ NzRing ∧ ( ℤ ∖ { 0 } ) = ( RLReg ‘ ℤring ) ) ) |
| 38 |
35 37
|
mpbi |
⊢ ( ℤring ∈ NzRing ∧ ( ℤ ∖ { 0 } ) = ( RLReg ‘ ℤring ) ) |
| 39 |
38
|
simpri |
⊢ ( ℤ ∖ { 0 } ) = ( RLReg ‘ ℤring ) |
| 40 |
39
|
oveq2i |
⊢ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) = ( ℤring RLocal ( RLReg ‘ ℤring ) ) |
| 41 |
33 40
|
eqtr4i |
⊢ ( Frac ‘ ℤring ) = ( ℤring RLocal ( ℤ ∖ { 0 } ) ) |
| 42 |
7
|
a1i |
⊢ ( ⊤ → ℤring ∈ IDomn ) |
| 43 |
|
difssd |
⊢ ( ⊤ → ( ℤ ∖ { 0 } ) ⊆ ℤ ) |
| 44 |
28 29 30 31 32 41 2 42 43
|
rlocbas |
⊢ ( ⊤ → ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) = ( Base ‘ ( Frac ‘ ℤring ) ) ) |
| 45 |
44
|
mptru |
⊢ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) = ( Base ‘ ( Frac ‘ ℤring ) ) |
| 46 |
27 45
|
eleqtrdi |
⊢ ( 𝑞 ∈ ℚ → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ) |
| 47 |
3 46
|
fmpti |
⊢ 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) |
| 48 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ V ) |
| 49 |
25 48
|
ax-mp |
⊢ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ V |
| 50 |
3
|
fvmpt2 |
⊢ ( ( 𝑞 ∈ ℚ ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ V ) → ( 𝐹 ‘ 𝑞 ) = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
| 51 |
49 50
|
mpan2 |
⊢ ( 𝑞 ∈ ℚ → ( 𝐹 ‘ 𝑞 ) = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ 𝑞 ) = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
| 53 |
|
fveq2 |
⊢ ( 𝑞 = 𝑝 → ( numer ‘ 𝑞 ) = ( numer ‘ 𝑝 ) ) |
| 54 |
|
fveq2 |
⊢ ( 𝑞 = 𝑝 → ( denom ‘ 𝑞 ) = ( denom ‘ 𝑝 ) ) |
| 55 |
53 54
|
opeq12d |
⊢ ( 𝑞 = 𝑝 → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ) |
| 56 |
55
|
eceq1d |
⊢ ( 𝑞 = 𝑝 → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) |
| 57 |
56 3 27
|
fvmpt3 |
⊢ ( 𝑝 ∈ ℚ → ( 𝐹 ‘ 𝑝 ) = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ 𝑝 ) = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) |
| 59 |
52 58
|
oveq12d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ( 𝐹 ‘ 𝑝 ) ) = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
| 60 |
41
|
fveq2i |
⊢ ( +g ‘ ( Frac ‘ ℤring ) ) = ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
| 61 |
60
|
oveqi |
⊢ ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ( 𝐹 ‘ 𝑝 ) ) |
| 62 |
61
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
| 63 |
|
fveq2 |
⊢ ( 𝑞 = 𝑢 → ( numer ‘ 𝑞 ) = ( numer ‘ 𝑢 ) ) |
| 64 |
|
fveq2 |
⊢ ( 𝑞 = 𝑢 → ( denom ‘ 𝑞 ) = ( denom ‘ 𝑢 ) ) |
| 65 |
63 64
|
opeq12d |
⊢ ( 𝑞 = 𝑢 → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ) |
| 66 |
65
|
eceq1d |
⊢ ( 𝑞 = 𝑢 → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ ) |
| 67 |
66
|
cbvmptv |
⊢ ( 𝑞 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) = ( 𝑢 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ ) |
| 68 |
3 67
|
eqtri |
⊢ 𝐹 = ( 𝑢 ∈ ℚ ↦ [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ ) |
| 69 |
|
zring1 |
⊢ 1 = ( 1r ‘ ℤring ) |
| 70 |
7
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ℤring ∈ IDomn ) |
| 71 |
70
|
idomcringd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ℤring ∈ CRing ) |
| 72 |
35
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ℤring ∈ Domn ) |
| 73 |
|
eqid |
⊢ ( mulGrp ‘ ℤring ) = ( mulGrp ‘ ℤring ) |
| 74 |
28 29 73
|
isdomn3 |
⊢ ( ℤring ∈ Domn ↔ ( ℤring ∈ Ring ∧ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) ) |
| 75 |
72 74
|
sylib |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ℤring ∈ Ring ∧ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) ) |
| 76 |
75
|
simprd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
| 77 |
28 29 69 30 31 32 2 71 76
|
erler |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ∼ Er ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
| 78 |
|
qcn |
⊢ ( 𝑞 ∈ ℚ → 𝑞 ∈ ℂ ) |
| 79 |
78
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 𝑞 ∈ ℂ ) |
| 80 |
|
qcn |
⊢ ( 𝑝 ∈ ℚ → 𝑝 ∈ ℂ ) |
| 81 |
80
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 𝑝 ∈ ℂ ) |
| 82 |
79 81
|
addcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 + 𝑝 ) ∈ ℂ ) |
| 83 |
|
qaddcl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 + 𝑝 ) ∈ ℚ ) |
| 84 |
|
qdencl |
⊢ ( ( 𝑞 + 𝑝 ) ∈ ℚ → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℕ ) |
| 85 |
83 84
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℕ ) |
| 86 |
85
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℂ ) |
| 87 |
20
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℕ ) |
| 88 |
87
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℂ ) |
| 89 |
|
qdencl |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ∈ ℕ ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ℕ ) |
| 91 |
90
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ℂ ) |
| 92 |
88 91
|
mulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℂ ) |
| 93 |
82 86 92
|
mul32d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( 𝑞 + 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) |
| 94 |
|
qmuldeneqnum |
⊢ ( ( 𝑞 + 𝑝 ) ∈ ℚ → ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) = ( numer ‘ ( 𝑞 + 𝑝 ) ) ) |
| 95 |
83 94
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) = ( numer ‘ ( 𝑞 + 𝑝 ) ) ) |
| 96 |
95
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 + 𝑝 ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 + 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
| 97 |
79 88 91
|
mulassd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( denom ‘ 𝑝 ) ) = ( 𝑞 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
| 98 |
|
qmuldeneqnum |
⊢ ( 𝑞 ∈ ℚ → ( 𝑞 · ( denom ‘ 𝑞 ) ) = ( numer ‘ 𝑞 ) ) |
| 99 |
98
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · ( denom ‘ 𝑞 ) ) = ( numer ‘ 𝑞 ) ) |
| 100 |
99
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( denom ‘ 𝑝 ) ) = ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) |
| 101 |
97 100
|
eqtr3d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) |
| 102 |
81 91 88
|
mulassd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑝 · ( denom ‘ 𝑝 ) ) · ( denom ‘ 𝑞 ) ) = ( 𝑝 · ( ( denom ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
| 103 |
|
qmuldeneqnum |
⊢ ( 𝑝 ∈ ℚ → ( 𝑝 · ( denom ‘ 𝑝 ) ) = ( numer ‘ 𝑝 ) ) |
| 104 |
103
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑝 · ( denom ‘ 𝑝 ) ) = ( numer ‘ 𝑝 ) ) |
| 105 |
104
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑝 · ( denom ‘ 𝑝 ) ) · ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) |
| 106 |
91 88
|
mulcomd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) = ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) |
| 107 |
106
|
oveq2d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑝 · ( ( denom ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) = ( 𝑝 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
| 108 |
102 105 107
|
3eqtr3rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑝 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) |
| 109 |
101 108
|
oveq12d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) + ( 𝑝 · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) = ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
| 110 |
79 92 81 109
|
joinlmuladdmuld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 + 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
| 111 |
110
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 + 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) = ( ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) |
| 112 |
93 96 111
|
3eqtr3d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ ( 𝑞 + 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) |
| 113 |
39
|
oveq2i |
⊢ ( ℤring ~RL ( ℤ ∖ { 0 } ) ) = ( ℤring ~RL ( RLReg ‘ ℤring ) ) |
| 114 |
2 113
|
eqtri |
⊢ ∼ = ( ℤring ~RL ( RLReg ‘ ℤring ) ) |
| 115 |
|
qnumcl |
⊢ ( ( 𝑞 + 𝑝 ) ∈ ℚ → ( numer ‘ ( 𝑞 + 𝑝 ) ) ∈ ℤ ) |
| 116 |
83 115
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ ( 𝑞 + 𝑝 ) ) ∈ ℤ ) |
| 117 |
19
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑞 ) ∈ ℤ ) |
| 118 |
89
|
nnzd |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ∈ ℤ ) |
| 119 |
118
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ℤ ) |
| 120 |
117 119
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℤ ) |
| 121 |
|
qnumcl |
⊢ ( 𝑝 ∈ ℚ → ( numer ‘ 𝑝 ) ∈ ℤ ) |
| 122 |
121
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑝 ) ∈ ℤ ) |
| 123 |
21
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ℤ ) |
| 124 |
122 123
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ∈ ℤ ) |
| 125 |
120 124
|
zaddcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ∈ ℤ ) |
| 126 |
85
|
nnzd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ℤ ) |
| 127 |
85
|
nnne0d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ≠ 0 ) |
| 128 |
126 127
|
eldifsnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
| 129 |
128 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 + 𝑝 ) ) ∈ ( RLReg ‘ ℤring ) ) |
| 130 |
123 119
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℤ ) |
| 131 |
87 90
|
nnmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ℕ ) |
| 132 |
131
|
nnne0d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ≠ 0 ) |
| 133 |
130 132
|
eldifsnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
| 134 |
133 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ∈ ( RLReg ‘ ℤring ) ) |
| 135 |
28 30 114 71 116 125 129 134
|
fracerl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ∼ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ↔ ( ( numer ‘ ( 𝑞 + 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) · ( denom ‘ ( 𝑞 + 𝑝 ) ) ) ) ) |
| 136 |
112 135
|
mpbird |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ∼ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ) |
| 137 |
77 136
|
erthi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → [ 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ] ∼ = [ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
| 138 |
137
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → [ 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ] ∼ = [ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
| 139 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 + 𝑝 ) → ( numer ‘ 𝑢 ) = ( numer ‘ ( 𝑞 + 𝑝 ) ) ) |
| 140 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 + 𝑝 ) → ( denom ‘ 𝑢 ) = ( denom ‘ ( 𝑞 + 𝑝 ) ) ) |
| 141 |
139 140
|
opeq12d |
⊢ ( 𝑢 = ( 𝑞 + 𝑝 ) → 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 = 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ) |
| 142 |
141
|
adantl |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 = 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ) |
| 143 |
142
|
eceq1d |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑞 + 𝑝 ) ) , ( denom ‘ ( 𝑞 + 𝑝 ) ) 〉 ] ∼ ) |
| 144 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
| 145 |
|
eqid |
⊢ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) = ( ℤring RLocal ( ℤ ∖ { 0 } ) ) |
| 146 |
|
zringcrng |
⊢ ℤring ∈ CRing |
| 147 |
146
|
a1i |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ℤring ∈ CRing ) |
| 148 |
35 74
|
mpbi |
⊢ ( ℤring ∈ Ring ∧ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
| 149 |
148
|
simpri |
⊢ ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) |
| 150 |
149
|
a1i |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
| 151 |
117
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( numer ‘ 𝑞 ) ∈ ℤ ) |
| 152 |
122
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( numer ‘ 𝑝 ) ∈ ℤ ) |
| 153 |
23
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ) |
| 154 |
153
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( denom ‘ 𝑞 ) ∈ ( ℤ ∖ { 0 } ) ) |
| 155 |
89
|
nnne0d |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ≠ 0 ) |
| 156 |
118 155
|
eldifsnd |
⊢ ( 𝑝 ∈ ℚ → ( denom ‘ 𝑝 ) ∈ ( ℤ ∖ { 0 } ) ) |
| 157 |
156
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ( ℤ ∖ { 0 } ) ) |
| 158 |
157
|
adantr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( denom ‘ 𝑝 ) ∈ ( ℤ ∖ { 0 } ) ) |
| 159 |
|
eqid |
⊢ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) = ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
| 160 |
28 30 144 145 2 147 150 151 152 154 158 159
|
rlocaddval |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) = [ 〈 ( ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) + ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
| 161 |
138 143 160
|
3eqtr4d |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ 𝑢 = ( 𝑞 + 𝑝 ) ) → [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
| 162 |
|
ovexd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ∈ V ) |
| 163 |
68 161 83 162
|
fvmptd2 |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( +g ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
| 164 |
59 62 163
|
3eqtr4rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
| 165 |
164
|
rgen2 |
⊢ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) |
| 166 |
47 165
|
pm3.2i |
⊢ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
| 167 |
1
|
qrngbas |
⊢ ℚ = ( Base ‘ 𝑄 ) |
| 168 |
|
eqid |
⊢ ( Base ‘ ( Frac ‘ ℤring ) ) = ( Base ‘ ( Frac ‘ ℤring ) ) |
| 169 |
|
qex |
⊢ ℚ ∈ V |
| 170 |
|
cnfldadd |
⊢ + = ( +g ‘ ℂfld ) |
| 171 |
1 170
|
ressplusg |
⊢ ( ℚ ∈ V → + = ( +g ‘ 𝑄 ) ) |
| 172 |
169 171
|
ax-mp |
⊢ + = ( +g ‘ 𝑄 ) |
| 173 |
|
eqid |
⊢ ( +g ‘ ( Frac ‘ ℤring ) ) = ( +g ‘ ( Frac ‘ ℤring ) ) |
| 174 |
167 168 172 173
|
isghm |
⊢ ( 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) ↔ ( ( 𝑄 ∈ Grp ∧ ( Frac ‘ ℤring ) ∈ Grp ) ∧ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 + 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( +g ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) ) ) |
| 175 |
18 166 174
|
mpbir2an |
⊢ 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) |
| 176 |
|
eqid |
⊢ ( mulGrp ‘ 𝑄 ) = ( mulGrp ‘ 𝑄 ) |
| 177 |
176
|
ringmgp |
⊢ ( 𝑄 ∈ Ring → ( mulGrp ‘ 𝑄 ) ∈ Mnd ) |
| 178 |
6 177
|
ax-mp |
⊢ ( mulGrp ‘ 𝑄 ) ∈ Mnd |
| 179 |
|
eqid |
⊢ ( mulGrp ‘ ( Frac ‘ ℤring ) ) = ( mulGrp ‘ ( Frac ‘ ℤring ) ) |
| 180 |
179
|
ringmgp |
⊢ ( ( Frac ‘ ℤring ) ∈ Ring → ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd ) |
| 181 |
12 180
|
ax-mp |
⊢ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd |
| 182 |
178 181
|
pm3.2i |
⊢ ( ( mulGrp ‘ 𝑄 ) ∈ Mnd ∧ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd ) |
| 183 |
|
eqid |
⊢ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) = ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
| 184 |
28 30 144 145 2 71 76 117 122 153 157 183
|
rlocmulval |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) = [ 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ ) |
| 185 |
79 81
|
mulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · 𝑝 ) ∈ ℂ ) |
| 186 |
|
qmulcl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝑞 · 𝑝 ) ∈ ℚ ) |
| 187 |
|
qdencl |
⊢ ( ( 𝑞 · 𝑝 ) ∈ ℚ → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℕ ) |
| 188 |
186 187
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℕ ) |
| 189 |
188
|
nncnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℂ ) |
| 190 |
185 189 92
|
mul32d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( 𝑞 · 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
| 191 |
79 81 88 91
|
mul4d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) ) |
| 192 |
191
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
| 193 |
190 192
|
eqtrd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
| 194 |
|
qmuldeneqnum |
⊢ ( ( 𝑞 · 𝑝 ) ∈ ℚ → ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( numer ‘ ( 𝑞 · 𝑝 ) ) ) |
| 195 |
186 194
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( numer ‘ ( 𝑞 · 𝑝 ) ) ) |
| 196 |
195
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · 𝑝 ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 · 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
| 197 |
99 104
|
oveq12d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) = ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) ) |
| 198 |
197
|
oveq1d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( 𝑞 · ( denom ‘ 𝑞 ) ) · ( 𝑝 · ( denom ‘ 𝑝 ) ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) ) |
| 199 |
193 196 198
|
3eqtr3rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 · 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) |
| 200 |
117 122
|
zmulcld |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) ∈ ℤ ) |
| 201 |
|
qnumcl |
⊢ ( ( 𝑞 · 𝑝 ) ∈ ℚ → ( numer ‘ ( 𝑞 · 𝑝 ) ) ∈ ℤ ) |
| 202 |
186 201
|
syl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ ( 𝑞 · 𝑝 ) ) ∈ ℤ ) |
| 203 |
188
|
nnzd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ℤ ) |
| 204 |
188
|
nnne0d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ≠ 0 ) |
| 205 |
203 204
|
eldifsnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
| 206 |
205 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ ( 𝑞 · 𝑝 ) ) ∈ ( RLReg ‘ ℤring ) ) |
| 207 |
28 30 114 71 200 202 134 206
|
fracerl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ∼ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ↔ ( ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) · ( denom ‘ ( 𝑞 · 𝑝 ) ) ) = ( ( numer ‘ ( 𝑞 · 𝑝 ) ) · ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) ) ) ) |
| 208 |
199 207
|
mpbird |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ∼ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ) |
| 209 |
77 208
|
erthi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → [ 〈 ( ( numer ‘ 𝑞 ) · ( numer ‘ 𝑝 ) ) , ( ( denom ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
| 210 |
184 209
|
eqtrd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
| 211 |
41
|
fveq2i |
⊢ ( .r ‘ ( Frac ‘ ℤring ) ) = ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) |
| 212 |
211
|
a1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( .r ‘ ( Frac ‘ ℤring ) ) = ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) ) |
| 213 |
212 52 58
|
oveq123d |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) = ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ( .r ‘ ( ℤring RLocal ( ℤ ∖ { 0 } ) ) ) [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
| 214 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → ( numer ‘ 𝑢 ) = ( numer ‘ ( 𝑞 · 𝑝 ) ) ) |
| 215 |
|
fveq2 |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → ( denom ‘ 𝑢 ) = ( denom ‘ ( 𝑞 · 𝑝 ) ) ) |
| 216 |
214 215
|
opeq12d |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 = 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ) |
| 217 |
216
|
eceq1d |
⊢ ( 𝑢 = ( 𝑞 · 𝑝 ) → [ 〈 ( numer ‘ 𝑢 ) , ( denom ‘ 𝑢 ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
| 218 |
|
ecexg |
⊢ ( ∼ ∈ V → [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ∈ V ) |
| 219 |
25 218
|
mp1i |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ∈ V ) |
| 220 |
68 217 186 219
|
fvmptd3 |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = [ 〈 ( numer ‘ ( 𝑞 · 𝑝 ) ) , ( denom ‘ ( 𝑞 · 𝑝 ) ) 〉 ] ∼ ) |
| 221 |
210 213 220
|
3eqtr4rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ) |
| 222 |
221
|
rgen2 |
⊢ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) |
| 223 |
|
zssq |
⊢ ℤ ⊆ ℚ |
| 224 |
|
1z |
⊢ 1 ∈ ℤ |
| 225 |
223 224
|
sselii |
⊢ 1 ∈ ℚ |
| 226 |
|
fveq2 |
⊢ ( 𝑞 = 1 → ( numer ‘ 𝑞 ) = ( numer ‘ 1 ) ) |
| 227 |
|
1zzd |
⊢ ( ℤring ∈ IDomn → 1 ∈ ℤ ) |
| 228 |
227
|
znumd |
⊢ ( ℤring ∈ IDomn → ( numer ‘ 1 ) = 1 ) |
| 229 |
7 228
|
ax-mp |
⊢ ( numer ‘ 1 ) = 1 |
| 230 |
226 229
|
eqtrdi |
⊢ ( 𝑞 = 1 → ( numer ‘ 𝑞 ) = 1 ) |
| 231 |
|
fveq2 |
⊢ ( 𝑞 = 1 → ( denom ‘ 𝑞 ) = ( denom ‘ 1 ) ) |
| 232 |
227
|
zdend |
⊢ ( ℤring ∈ IDomn → ( denom ‘ 1 ) = 1 ) |
| 233 |
7 232
|
ax-mp |
⊢ ( denom ‘ 1 ) = 1 |
| 234 |
231 233
|
eqtrdi |
⊢ ( 𝑞 = 1 → ( denom ‘ 𝑞 ) = 1 ) |
| 235 |
230 234
|
opeq12d |
⊢ ( 𝑞 = 1 → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 1 , 1 〉 ) |
| 236 |
235
|
eceq1d |
⊢ ( 𝑞 = 1 → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 1 , 1 〉 ] ∼ ) |
| 237 |
236 3 49
|
fvmpt3i |
⊢ ( 1 ∈ ℚ → ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ ) |
| 238 |
225 237
|
ax-mp |
⊢ ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ |
| 239 |
47 222 238
|
3pm3.2i |
⊢ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ ) |
| 240 |
176 167
|
mgpbas |
⊢ ℚ = ( Base ‘ ( mulGrp ‘ 𝑄 ) ) |
| 241 |
179 168
|
mgpbas |
⊢ ( Base ‘ ( Frac ‘ ℤring ) ) = ( Base ‘ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
| 242 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
| 243 |
1 242
|
ressmulr |
⊢ ( ℚ ∈ V → · = ( .r ‘ 𝑄 ) ) |
| 244 |
169 243
|
ax-mp |
⊢ · = ( .r ‘ 𝑄 ) |
| 245 |
176 244
|
mgpplusg |
⊢ · = ( +g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 246 |
|
eqid |
⊢ ( .r ‘ ( Frac ‘ ℤring ) ) = ( .r ‘ ( Frac ‘ ℤring ) ) |
| 247 |
179 246
|
mgpplusg |
⊢ ( .r ‘ ( Frac ‘ ℤring ) ) = ( +g ‘ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
| 248 |
1
|
qrng1 |
⊢ 1 = ( 1r ‘ 𝑄 ) |
| 249 |
176 248
|
ringidval |
⊢ 1 = ( 0g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 250 |
146
|
a1i |
⊢ ( ℤring ∈ IDomn → ℤring ∈ CRing ) |
| 251 |
149
|
a1i |
⊢ ( ℤring ∈ IDomn → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
| 252 |
|
eqid |
⊢ [ 〈 1 , 1 〉 ] ∼ = [ 〈 1 , 1 〉 ] ∼ |
| 253 |
29 69 41 2 250 251 252
|
rloc1r |
⊢ ( ℤring ∈ IDomn → [ 〈 1 , 1 〉 ] ∼ = ( 1r ‘ ( Frac ‘ ℤring ) ) ) |
| 254 |
7 253
|
ax-mp |
⊢ [ 〈 1 , 1 〉 ] ∼ = ( 1r ‘ ( Frac ‘ ℤring ) ) |
| 255 |
179 254
|
ringidval |
⊢ [ 〈 1 , 1 〉 ] ∼ = ( 0g ‘ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
| 256 |
240 241 245 247 249 255
|
ismhm |
⊢ ( 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) ↔ ( ( ( mulGrp ‘ 𝑄 ) ∈ Mnd ∧ ( mulGrp ‘ ( Frac ‘ ℤring ) ) ∈ Mnd ) ∧ ( 𝐹 : ℚ ⟶ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( 𝐹 ‘ ( 𝑞 · 𝑝 ) ) = ( ( 𝐹 ‘ 𝑞 ) ( .r ‘ ( Frac ‘ ℤring ) ) ( 𝐹 ‘ 𝑝 ) ) ∧ ( 𝐹 ‘ 1 ) = [ 〈 1 , 1 〉 ] ∼ ) ) ) |
| 257 |
182 239 256
|
mpbir2an |
⊢ 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) |
| 258 |
175 257
|
pm3.2i |
⊢ ( 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) ) |
| 259 |
176 179
|
isrhm |
⊢ ( 𝐹 ∈ ( 𝑄 RingHom ( Frac ‘ ℤring ) ) ↔ ( ( 𝑄 ∈ Ring ∧ ( Frac ‘ ℤring ) ∈ Ring ) ∧ ( 𝐹 ∈ ( 𝑄 GrpHom ( Frac ‘ ℤring ) ) ∧ 𝐹 ∈ ( ( mulGrp ‘ 𝑄 ) MndHom ( mulGrp ‘ ( Frac ‘ ℤring ) ) ) ) ) ) |
| 260 |
13 258 259
|
mpbir2an |
⊢ 𝐹 ∈ ( 𝑄 RingHom ( Frac ‘ ℤring ) ) |
| 261 |
46
|
rgen |
⊢ ∀ 𝑞 ∈ ℚ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) |
| 262 |
117
|
zcnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑞 ) ∈ ℂ ) |
| 263 |
122
|
zcnd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( numer ‘ 𝑝 ) ∈ ℂ ) |
| 264 |
22
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ≠ 0 ) |
| 265 |
155
|
adantl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ≠ 0 ) |
| 266 |
262 88 263 91 264 265
|
divmuleqd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ↔ ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
| 267 |
153 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑞 ) ∈ ( RLReg ‘ ℤring ) ) |
| 268 |
157 39
|
eleqtrdi |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( denom ‘ 𝑝 ) ∈ ( RLReg ‘ ℤring ) ) |
| 269 |
28 30 114 71 117 122 267 268
|
fracerl |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∼ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ↔ ( ( numer ‘ 𝑞 ) · ( denom ‘ 𝑝 ) ) = ( ( numer ‘ 𝑝 ) · ( denom ‘ 𝑞 ) ) ) ) |
| 270 |
24
|
adantr |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∈ ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
| 271 |
77 270
|
erth |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ∼ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ↔ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) ) |
| 272 |
266 269 271
|
3bitr2rd |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ↔ ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) ) |
| 273 |
272
|
biimpa |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) |
| 274 |
|
qeqnumdivden |
⊢ ( 𝑞 ∈ ℚ → 𝑞 = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
| 275 |
274
|
ad2antrr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → 𝑞 = ( ( numer ‘ 𝑞 ) / ( denom ‘ 𝑞 ) ) ) |
| 276 |
|
qeqnumdivden |
⊢ ( 𝑝 ∈ ℚ → 𝑝 = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) |
| 277 |
276
|
ad2antlr |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → 𝑝 = ( ( numer ‘ 𝑝 ) / ( denom ‘ 𝑝 ) ) ) |
| 278 |
273 275 277
|
3eqtr4d |
⊢ ( ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) ∧ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ ) → 𝑞 = 𝑝 ) |
| 279 |
278
|
ex |
⊢ ( ( 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ ) → ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ → 𝑞 = 𝑝 ) ) |
| 280 |
279
|
rgen2 |
⊢ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ → 𝑞 = 𝑝 ) |
| 281 |
3 56
|
f1mpt |
⊢ ( 𝐹 : ℚ –1-1→ ( Base ‘ ( Frac ‘ ℤring ) ) ↔ ( ∀ 𝑞 ∈ ℚ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑞 ∈ ℚ ∀ 𝑝 ∈ ℚ ( [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ 𝑝 ) , ( denom ‘ 𝑝 ) 〉 ] ∼ → 𝑞 = 𝑝 ) ) ) |
| 282 |
261 280 281
|
mpbir2an |
⊢ 𝐹 : ℚ –1-1→ ( Base ‘ ( Frac ‘ ℤring ) ) |
| 283 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → ( numer ‘ 𝑞 ) = ( numer ‘ ( 𝑎 / 𝑏 ) ) ) |
| 284 |
|
fveq2 |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → ( denom ‘ 𝑞 ) = ( denom ‘ ( 𝑎 / 𝑏 ) ) ) |
| 285 |
283 284
|
opeq12d |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 = 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ) |
| 286 |
285
|
eceq1d |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) |
| 287 |
286
|
eqeq2d |
⊢ ( 𝑞 = ( 𝑎 / 𝑏 ) → ( 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ↔ 𝑧 = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) ) |
| 288 |
|
simpllr |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 ∈ ℤ ) |
| 289 |
223 288
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑎 ∈ ℚ ) |
| 290 |
|
simplr |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
| 291 |
290
|
eldifad |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ ℤ ) |
| 292 |
223 291
|
sselid |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ∈ ℚ ) |
| 293 |
|
eldifsni |
⊢ ( 𝑏 ∈ ( ℤ ∖ { 0 } ) → 𝑏 ≠ 0 ) |
| 294 |
290 293
|
syl |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑏 ≠ 0 ) |
| 295 |
|
qdivcl |
⊢ ( ( 𝑎 ∈ ℚ ∧ 𝑏 ∈ ℚ ∧ 𝑏 ≠ 0 ) → ( 𝑎 / 𝑏 ) ∈ ℚ ) |
| 296 |
289 292 294 295
|
syl3anc |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( 𝑎 / 𝑏 ) ∈ ℚ ) |
| 297 |
|
simpr |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 298 |
146
|
a1i |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ℤring ∈ CRing ) |
| 299 |
149
|
a1i |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ( ℤ ∖ { 0 } ) ∈ ( SubMnd ‘ ( mulGrp ‘ ℤring ) ) ) |
| 300 |
28 29 69 30 31 32 2 298 299
|
erler |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∼ Er ( ℤ × ( ℤ ∖ { 0 } ) ) ) |
| 301 |
|
simpl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑎 ∈ ℤ ) |
| 302 |
301
|
zcnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑎 ∈ ℂ ) |
| 303 |
|
eldifi |
⊢ ( 𝑏 ∈ ( ℤ ∖ { 0 } ) → 𝑏 ∈ ℤ ) |
| 304 |
303
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ℤ ) |
| 305 |
304
|
zcnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ℂ ) |
| 306 |
293
|
adantl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ≠ 0 ) |
| 307 |
302 305 306
|
divcld |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 𝑎 / 𝑏 ) ∈ ℂ ) |
| 308 |
223 301
|
sselid |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑎 ∈ ℚ ) |
| 309 |
223 304
|
sselid |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ℚ ) |
| 310 |
308 309 306 295
|
syl3anc |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 𝑎 / 𝑏 ) ∈ ℚ ) |
| 311 |
|
qdencl |
⊢ ( ( 𝑎 / 𝑏 ) ∈ ℚ → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℕ ) |
| 312 |
310 311
|
syl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℕ ) |
| 313 |
312
|
nncnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℂ ) |
| 314 |
307 313 305
|
mul32d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) · 𝑏 ) = ( ( ( 𝑎 / 𝑏 ) · 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) ) |
| 315 |
|
qmuldeneqnum |
⊢ ( ( 𝑎 / 𝑏 ) ∈ ℚ → ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( numer ‘ ( 𝑎 / 𝑏 ) ) ) |
| 316 |
310 315
|
syl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( numer ‘ ( 𝑎 / 𝑏 ) ) ) |
| 317 |
316
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑎 / 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) · 𝑏 ) = ( ( numer ‘ ( 𝑎 / 𝑏 ) ) · 𝑏 ) ) |
| 318 |
302 305 306
|
divcan1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( 𝑎 / 𝑏 ) · 𝑏 ) = 𝑎 ) |
| 319 |
318
|
oveq1d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( ( ( 𝑎 / 𝑏 ) · 𝑏 ) · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( 𝑎 · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) ) |
| 320 |
314 317 319
|
3eqtr3rd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 𝑎 · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( ( numer ‘ ( 𝑎 / 𝑏 ) ) · 𝑏 ) ) |
| 321 |
146
|
a1i |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ℤring ∈ CRing ) |
| 322 |
|
qnumcl |
⊢ ( ( 𝑎 / 𝑏 ) ∈ ℚ → ( numer ‘ ( 𝑎 / 𝑏 ) ) ∈ ℤ ) |
| 323 |
310 322
|
syl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( numer ‘ ( 𝑎 / 𝑏 ) ) ∈ ℤ ) |
| 324 |
|
simpr |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ( ℤ ∖ { 0 } ) ) |
| 325 |
324 39
|
eleqtrdi |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 𝑏 ∈ ( RLReg ‘ ℤring ) ) |
| 326 |
312
|
nnzd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ℤ ) |
| 327 |
312
|
nnne0d |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ≠ 0 ) |
| 328 |
326 327
|
eldifsnd |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ( ℤ ∖ { 0 } ) ) |
| 329 |
328 39
|
eleqtrdi |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( denom ‘ ( 𝑎 / 𝑏 ) ) ∈ ( RLReg ‘ ℤring ) ) |
| 330 |
28 30 114 321 301 323 325 329
|
fracerl |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → ( 〈 𝑎 , 𝑏 〉 ∼ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ↔ ( 𝑎 · ( denom ‘ ( 𝑎 / 𝑏 ) ) ) = ( ( numer ‘ ( 𝑎 / 𝑏 ) ) · 𝑏 ) ) ) |
| 331 |
320 330
|
mpbird |
⊢ ( ( 𝑎 ∈ ℤ ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) → 〈 𝑎 , 𝑏 〉 ∼ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ) |
| 332 |
331
|
ad4ant23 |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 〈 𝑎 , 𝑏 〉 ∼ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ) |
| 333 |
300 332
|
erthi |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → [ 〈 𝑎 , 𝑏 〉 ] ∼ = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) |
| 334 |
297 333
|
eqtrd |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → 𝑧 = [ 〈 ( numer ‘ ( 𝑎 / 𝑏 ) ) , ( denom ‘ ( 𝑎 / 𝑏 ) ) 〉 ] ∼ ) |
| 335 |
287 296 334
|
rspcedvdw |
⊢ ( ( ( ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝑎 ∈ ℤ ) ∧ 𝑏 ∈ ( ℤ ∖ { 0 } ) ) ∧ 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) → ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
| 336 |
45
|
eleq2i |
⊢ ( 𝑧 ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ↔ 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ) |
| 337 |
336
|
biimpri |
⊢ ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) → 𝑧 ∈ ( ( ℤ × ( ℤ ∖ { 0 } ) ) / ∼ ) ) |
| 338 |
337
|
elrlocbasi |
⊢ ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) → ∃ 𝑎 ∈ ℤ ∃ 𝑏 ∈ ( ℤ ∖ { 0 } ) 𝑧 = [ 〈 𝑎 , 𝑏 〉 ] ∼ ) |
| 339 |
335 338
|
r19.29vva |
⊢ ( 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) → ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) |
| 340 |
339
|
rgen |
⊢ ∀ 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ |
| 341 |
3
|
fompt |
⊢ ( 𝐹 : ℚ –onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ↔ ( ∀ 𝑞 ∈ ℚ [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ ∀ 𝑧 ∈ ( Base ‘ ( Frac ‘ ℤring ) ) ∃ 𝑞 ∈ ℚ 𝑧 = [ 〈 ( numer ‘ 𝑞 ) , ( denom ‘ 𝑞 ) 〉 ] ∼ ) ) |
| 342 |
261 340 341
|
mpbir2an |
⊢ 𝐹 : ℚ –onto→ ( Base ‘ ( Frac ‘ ℤring ) ) |
| 343 |
|
df-f1o |
⊢ ( 𝐹 : ℚ –1-1-onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ↔ ( 𝐹 : ℚ –1-1→ ( Base ‘ ( Frac ‘ ℤring ) ) ∧ 𝐹 : ℚ –onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ) ) |
| 344 |
282 342 343
|
mpbir2an |
⊢ 𝐹 : ℚ –1-1-onto→ ( Base ‘ ( Frac ‘ ℤring ) ) |
| 345 |
167 168
|
isrim |
⊢ ( 𝐹 ∈ ( 𝑄 RingIso ( Frac ‘ ℤring ) ) ↔ ( 𝐹 ∈ ( 𝑄 RingHom ( Frac ‘ ℤring ) ) ∧ 𝐹 : ℚ –1-1-onto→ ( Base ‘ ( Frac ‘ ℤring ) ) ) ) |
| 346 |
260 344 345
|
mpbir2an |
⊢ 𝐹 ∈ ( 𝑄 RingIso ( Frac ‘ ℤring ) ) |