Metamath Proof Explorer


Theorem zringfrac

Description: The field of fractions of the ring of integers is isomorphic to the field of the rational numbers. (Contributed by Thierry Arnoux, 4-May-2025)

Ref Expression
Hypotheses zringfrac.1 Q = fld 𝑠
zringfrac.2 ˙ = ring ~RL 0
zringfrac.3 F = q numer q denom q ˙
Assertion zringfrac F Q RingIso Frac ring

Proof

Step Hyp Ref Expression
1 zringfrac.1 Q = fld 𝑠
2 zringfrac.2 ˙ = ring ~RL 0
3 zringfrac.3 F = q numer q denom q ˙
4 1 qdrng Q DivRing
5 drngring Q DivRing Q Ring
6 4 5 ax-mp Q Ring
7 zringidom ring IDomn
8 id ring IDomn ring IDomn
9 8 fracfld ring IDomn Frac ring Field
10 9 fldcrngd ring IDomn Frac ring CRing
11 10 crngringd ring IDomn Frac ring Ring
12 7 11 ax-mp Frac ring Ring
13 6 12 pm3.2i Q Ring Frac ring Ring
14 ringgrp Q Ring Q Grp
15 6 14 ax-mp Q Grp
16 ringgrp Frac ring Ring Frac ring Grp
17 12 16 ax-mp Frac ring Grp
18 15 17 pm3.2i Q Grp Frac ring Grp
19 qnumcl q numer q
20 qdencl q denom q
21 20 nnzd q denom q
22 20 nnne0d q denom q 0
23 21 22 eldifsnd q denom q 0
24 19 23 opelxpd q numer q denom q × 0
25 2 ovexi ˙ V
26 25 ecelqsi numer q denom q × 0 numer q denom q ˙ × 0 / ˙
27 24 26 syl q numer q denom q ˙ × 0 / ˙
28 zringbas = Base ring
29 zring0 0 = 0 ring
30 zringmulr × = ring
31 eqid - ring = - ring
32 eqid × 0 = × 0
33 fracval Frac ring = ring RLocal RLReg ring
34 8 idomdomd ring IDomn ring Domn
35 7 34 ax-mp ring Domn
36 eqid RLReg ring = RLReg ring
37 28 36 29 isdomn6 ring Domn ring NzRing 0 = RLReg ring
38 35 37 mpbi ring NzRing 0 = RLReg ring
39 38 simpri 0 = RLReg ring
40 39 oveq2i ring RLocal 0 = ring RLocal RLReg ring
41 33 40 eqtr4i Frac ring = ring RLocal 0
42 7 a1i ring IDomn
43 difssd 0
44 28 29 30 31 32 41 2 42 43 rlocbas × 0 / ˙ = Base Frac ring
45 44 mptru × 0 / ˙ = Base Frac ring
46 27 45 eleqtrdi q numer q denom q ˙ Base Frac ring
47 3 46 fmpti F : Base Frac ring
48 ecexg ˙ V numer q denom q ˙ V
49 25 48 ax-mp numer q denom q ˙ V
50 3 fvmpt2 q numer q denom q ˙ V F q = numer q denom q ˙
51 49 50 mpan2 q F q = numer q denom q ˙
52 51 adantr q p F q = numer q denom q ˙
53 fveq2 q = p numer q = numer p
54 fveq2 q = p denom q = denom p
55 53 54 opeq12d q = p numer q denom q = numer p denom p
56 55 eceq1d q = p numer q denom q ˙ = numer p denom p ˙
57 56 3 27 fvmpt3 p F p = numer p denom p ˙
58 57 adantl q p F p = numer p denom p ˙
59 52 58 oveq12d q p F q + ring RLocal 0 F p = numer q denom q ˙ + ring RLocal 0 numer p denom p ˙
60 41 fveq2i + Frac ring = + ring RLocal 0
61 60 oveqi F q + Frac ring F p = F q + ring RLocal 0 F p
62 61 a1i q p F q + Frac ring F p = F q + ring RLocal 0 F p
63 fveq2 q = u numer q = numer u
64 fveq2 q = u denom q = denom u
65 63 64 opeq12d q = u numer q denom q = numer u denom u
66 65 eceq1d q = u numer q denom q ˙ = numer u denom u ˙
67 66 cbvmptv q numer q denom q ˙ = u numer u denom u ˙
68 3 67 eqtri F = u numer u denom u ˙
69 zring1 1 = 1 ring
70 7 a1i q p ring IDomn
71 70 idomcringd q p ring CRing
72 35 a1i q p ring Domn
73 eqid mulGrp ring = mulGrp ring
74 28 29 73 isdomn3 ring Domn ring Ring 0 SubMnd mulGrp ring
75 72 74 sylib q p ring Ring 0 SubMnd mulGrp ring
76 75 simprd q p 0 SubMnd mulGrp ring
77 28 29 69 30 31 32 2 71 76 erler q p ˙ Er × 0
78 qcn q q
79 78 adantr q p q
80 qcn p p
81 80 adantl q p p
82 79 81 addcld q p q + p
83 qaddcl q p q + p
84 qdencl q + p denom q + p
85 83 84 syl q p denom q + p
86 85 nncnd q p denom q + p
87 20 adantr q p denom q
88 87 nncnd q p denom q
89 qdencl p denom p
90 89 adantl q p denom p
91 90 nncnd q p denom p
92 88 91 mulcld q p denom q denom p
93 82 86 92 mul32d q p q + p denom q + p denom q denom p = q + p denom q denom p denom q + p
94 qmuldeneqnum q + p q + p denom q + p = numer q + p
95 83 94 syl q p q + p denom q + p = numer q + p
96 95 oveq1d q p q + p denom q + p denom q denom p = numer q + p denom q denom p
97 79 88 91 mulassd q p q denom q denom p = q denom q denom p
98 qmuldeneqnum q q denom q = numer q
99 98 adantr q p q denom q = numer q
100 99 oveq1d q p q denom q denom p = numer q denom p
101 97 100 eqtr3d q p q denom q denom p = numer q denom p
102 81 91 88 mulassd q p p denom p denom q = p denom p denom q
103 qmuldeneqnum p p denom p = numer p
104 103 adantl q p p denom p = numer p
105 104 oveq1d q p p denom p denom q = numer p denom q
106 91 88 mulcomd q p denom p denom q = denom q denom p
107 106 oveq2d q p p denom p denom q = p denom q denom p
108 102 105 107 3eqtr3rd q p p denom q denom p = numer p denom q
109 101 108 oveq12d q p q denom q denom p + p denom q denom p = numer q denom p + numer p denom q
110 79 92 81 109 joinlmuladdmuld q p q + p denom q denom p = numer q denom p + numer p denom q
111 110 oveq1d q p q + p denom q denom p denom q + p = numer q denom p + numer p denom q denom q + p
112 93 96 111 3eqtr3d q p numer q + p denom q denom p = numer q denom p + numer p denom q denom q + p
113 39 oveq2i ring ~RL 0 = ring ~RL RLReg ring
114 2 113 eqtri ˙ = ring ~RL RLReg ring
115 qnumcl q + p numer q + p
116 83 115 syl q p numer q + p
117 19 adantr q p numer q
118 89 nnzd p denom p
119 118 adantl q p denom p
120 117 119 zmulcld q p numer q denom p
121 qnumcl p numer p
122 121 adantl q p numer p
123 21 adantr q p denom q
124 122 123 zmulcld q p numer p denom q
125 120 124 zaddcld q p numer q denom p + numer p denom q
126 85 nnzd q p denom q + p
127 85 nnne0d q p denom q + p 0
128 126 127 eldifsnd q p denom q + p 0
129 128 39 eleqtrdi q p denom q + p RLReg ring
130 123 119 zmulcld q p denom q denom p
131 87 90 nnmulcld q p denom q denom p
132 131 nnne0d q p denom q denom p 0
133 130 132 eldifsnd q p denom q denom p 0
134 133 39 eleqtrdi q p denom q denom p RLReg ring
135 28 30 114 71 116 125 129 134 fracerl q p numer q + p denom q + p ˙ numer q denom p + numer p denom q denom q denom p numer q + p denom q denom p = numer q denom p + numer p denom q denom q + p
136 112 135 mpbird q p numer q + p denom q + p ˙ numer q denom p + numer p denom q denom q denom p
137 77 136 erthi q p numer q + p denom q + p ˙ = numer q denom p + numer p denom q denom q denom p ˙
138 137 adantr q p u = q + p numer q + p denom q + p ˙ = numer q denom p + numer p denom q denom q denom p ˙
139 fveq2 u = q + p numer u = numer q + p
140 fveq2 u = q + p denom u = denom q + p
141 139 140 opeq12d u = q + p numer u denom u = numer q + p denom q + p
142 141 adantl q p u = q + p numer u denom u = numer q + p denom q + p
143 142 eceq1d q p u = q + p numer u denom u ˙ = numer q + p denom q + p ˙
144 zringplusg + = + ring
145 eqid ring RLocal 0 = ring RLocal 0
146 zringcrng ring CRing
147 146 a1i q p u = q + p ring CRing
148 35 74 mpbi ring Ring 0 SubMnd mulGrp ring
149 148 simpri 0 SubMnd mulGrp ring
150 149 a1i q p u = q + p 0 SubMnd mulGrp ring
151 117 adantr q p u = q + p numer q
152 122 adantr q p u = q + p numer p
153 23 adantr q p denom q 0
154 153 adantr q p u = q + p denom q 0
155 89 nnne0d p denom p 0
156 118 155 eldifsnd p denom p 0
157 156 adantl q p denom p 0
158 157 adantr q p u = q + p denom p 0
159 eqid + ring RLocal 0 = + ring RLocal 0
160 28 30 144 145 2 147 150 151 152 154 158 159 rlocaddval q p u = q + p numer q denom q ˙ + ring RLocal 0 numer p denom p ˙ = numer q denom p + numer p denom q denom q denom p ˙
161 138 143 160 3eqtr4d q p u = q + p numer u denom u ˙ = numer q denom q ˙ + ring RLocal 0 numer p denom p ˙
162 ovexd q p numer q denom q ˙ + ring RLocal 0 numer p denom p ˙ V
163 68 161 83 162 fvmptd2 q p F q + p = numer q denom q ˙ + ring RLocal 0 numer p denom p ˙
164 59 62 163 3eqtr4rd q p F q + p = F q + Frac ring F p
165 164 rgen2 q p F q + p = F q + Frac ring F p
166 47 165 pm3.2i F : Base Frac ring q p F q + p = F q + Frac ring F p
167 1 qrngbas = Base Q
168 eqid Base Frac ring = Base Frac ring
169 qex V
170 cnfldadd + = + fld
171 1 170 ressplusg V + = + Q
172 169 171 ax-mp + = + Q
173 eqid + Frac ring = + Frac ring
174 167 168 172 173 isghm F Q GrpHom Frac ring Q Grp Frac ring Grp F : Base Frac ring q p F q + p = F q + Frac ring F p
175 18 166 174 mpbir2an F Q GrpHom Frac ring
176 eqid mulGrp Q = mulGrp Q
177 176 ringmgp Q Ring mulGrp Q Mnd
178 6 177 ax-mp mulGrp Q Mnd
179 eqid mulGrp Frac ring = mulGrp Frac ring
180 179 ringmgp Frac ring Ring mulGrp Frac ring Mnd
181 12 180 ax-mp mulGrp Frac ring Mnd
182 178 181 pm3.2i mulGrp Q Mnd mulGrp Frac ring Mnd
183 eqid ring RLocal 0 = ring RLocal 0
184 28 30 144 145 2 71 76 117 122 153 157 183 rlocmulval q p numer q denom q ˙ ring RLocal 0 numer p denom p ˙ = numer q numer p denom q denom p ˙
185 79 81 mulcld q p q p
186 qmulcl q p q p
187 qdencl q p denom q p
188 186 187 syl q p denom q p
189 188 nncnd q p denom q p
190 185 189 92 mul32d q p q p denom q p denom q denom p = q p denom q denom p denom q p
191 79 81 88 91 mul4d q p q p denom q denom p = q denom q p denom p
192 191 oveq1d q p q p denom q denom p denom q p = q denom q p denom p denom q p
193 190 192 eqtrd q p q p denom q p denom q denom p = q denom q p denom p denom q p
194 qmuldeneqnum q p q p denom q p = numer q p
195 186 194 syl q p q p denom q p = numer q p
196 195 oveq1d q p q p denom q p denom q denom p = numer q p denom q denom p
197 99 104 oveq12d q p q denom q p denom p = numer q numer p
198 197 oveq1d q p q denom q p denom p denom q p = numer q numer p denom q p
199 193 196 198 3eqtr3rd q p numer q numer p denom q p = numer q p denom q denom p
200 117 122 zmulcld q p numer q numer p
201 qnumcl q p numer q p
202 186 201 syl q p numer q p
203 188 nnzd q p denom q p
204 188 nnne0d q p denom q p 0
205 203 204 eldifsnd q p denom q p 0
206 205 39 eleqtrdi q p denom q p RLReg ring
207 28 30 114 71 200 202 134 206 fracerl q p numer q numer p denom q denom p ˙ numer q p denom q p numer q numer p denom q p = numer q p denom q denom p
208 199 207 mpbird q p numer q numer p denom q denom p ˙ numer q p denom q p
209 77 208 erthi q p numer q numer p denom q denom p ˙ = numer q p denom q p ˙
210 184 209 eqtrd q p numer q denom q ˙ ring RLocal 0 numer p denom p ˙ = numer q p denom q p ˙
211 41 fveq2i Frac ring = ring RLocal 0
212 211 a1i q p Frac ring = ring RLocal 0
213 212 52 58 oveq123d q p F q Frac ring F p = numer q denom q ˙ ring RLocal 0 numer p denom p ˙
214 fveq2 u = q p numer u = numer q p
215 fveq2 u = q p denom u = denom q p
216 214 215 opeq12d u = q p numer u denom u = numer q p denom q p
217 216 eceq1d u = q p numer u denom u ˙ = numer q p denom q p ˙
218 ecexg ˙ V numer q p denom q p ˙ V
219 25 218 mp1i q p numer q p denom q p ˙ V
220 68 217 186 219 fvmptd3 q p F q p = numer q p denom q p ˙
221 210 213 220 3eqtr4rd q p F q p = F q Frac ring F p
222 221 rgen2 q p F q p = F q Frac ring F p
223 zssq
224 1z 1
225 223 224 sselii 1
226 fveq2 q = 1 numer q = numer 1
227 1zzd ring IDomn 1
228 227 znumd ring IDomn numer 1 = 1
229 7 228 ax-mp numer 1 = 1
230 226 229 eqtrdi q = 1 numer q = 1
231 fveq2 q = 1 denom q = denom 1
232 227 zdend ring IDomn denom 1 = 1
233 7 232 ax-mp denom 1 = 1
234 231 233 eqtrdi q = 1 denom q = 1
235 230 234 opeq12d q = 1 numer q denom q = 1 1
236 235 eceq1d q = 1 numer q denom q ˙ = 1 1 ˙
237 236 3 49 fvmpt3i 1 F 1 = 1 1 ˙
238 225 237 ax-mp F 1 = 1 1 ˙
239 47 222 238 3pm3.2i F : Base Frac ring q p F q p = F q Frac ring F p F 1 = 1 1 ˙
240 176 167 mgpbas = Base mulGrp Q
241 179 168 mgpbas Base Frac ring = Base mulGrp Frac ring
242 cnfldmul × = fld
243 1 242 ressmulr V × = Q
244 169 243 ax-mp × = Q
245 176 244 mgpplusg × = + mulGrp Q
246 eqid Frac ring = Frac ring
247 179 246 mgpplusg Frac ring = + mulGrp Frac ring
248 1 qrng1 1 = 1 Q
249 176 248 ringidval 1 = 0 mulGrp Q
250 146 a1i ring IDomn ring CRing
251 149 a1i ring IDomn 0 SubMnd mulGrp ring
252 eqid 1 1 ˙ = 1 1 ˙
253 29 69 41 2 250 251 252 rloc1r ring IDomn 1 1 ˙ = 1 Frac ring
254 7 253 ax-mp 1 1 ˙ = 1 Frac ring
255 179 254 ringidval 1 1 ˙ = 0 mulGrp Frac ring
256 240 241 245 247 249 255 ismhm F mulGrp Q MndHom mulGrp Frac ring mulGrp Q Mnd mulGrp Frac ring Mnd F : Base Frac ring q p F q p = F q Frac ring F p F 1 = 1 1 ˙
257 182 239 256 mpbir2an F mulGrp Q MndHom mulGrp Frac ring
258 175 257 pm3.2i F Q GrpHom Frac ring F mulGrp Q MndHom mulGrp Frac ring
259 176 179 isrhm F Q RingHom Frac ring Q Ring Frac ring Ring F Q GrpHom Frac ring F mulGrp Q MndHom mulGrp Frac ring
260 13 258 259 mpbir2an F Q RingHom Frac ring
261 46 rgen q numer q denom q ˙ Base Frac ring
262 117 zcnd q p numer q
263 122 zcnd q p numer p
264 22 adantr q p denom q 0
265 155 adantl q p denom p 0
266 262 88 263 91 264 265 divmuleqd q p numer q denom q = numer p denom p numer q denom p = numer p denom q
267 153 39 eleqtrdi q p denom q RLReg ring
268 157 39 eleqtrdi q p denom p RLReg ring
269 28 30 114 71 117 122 267 268 fracerl q p numer q denom q ˙ numer p denom p numer q denom p = numer p denom q
270 24 adantr q p numer q denom q × 0
271 77 270 erth q p numer q denom q ˙ numer p denom p numer q denom q ˙ = numer p denom p ˙
272 266 269 271 3bitr2rd q p numer q denom q ˙ = numer p denom p ˙ numer q denom q = numer p denom p
273 272 biimpa q p numer q denom q ˙ = numer p denom p ˙ numer q denom q = numer p denom p
274 qeqnumdivden q q = numer q denom q
275 274 ad2antrr q p numer q denom q ˙ = numer p denom p ˙ q = numer q denom q
276 qeqnumdivden p p = numer p denom p
277 276 ad2antlr q p numer q denom q ˙ = numer p denom p ˙ p = numer p denom p
278 273 275 277 3eqtr4d q p numer q denom q ˙ = numer p denom p ˙ q = p
279 278 ex q p numer q denom q ˙ = numer p denom p ˙ q = p
280 279 rgen2 q p numer q denom q ˙ = numer p denom p ˙ q = p
281 3 56 f1mpt F : 1-1 Base Frac ring q numer q denom q ˙ Base Frac ring q p numer q denom q ˙ = numer p denom p ˙ q = p
282 261 280 281 mpbir2an F : 1-1 Base Frac ring
283 fveq2 q = a b numer q = numer a b
284 fveq2 q = a b denom q = denom a b
285 283 284 opeq12d q = a b numer q denom q = numer a b denom a b
286 285 eceq1d q = a b numer q denom q ˙ = numer a b denom a b ˙
287 286 eqeq2d q = a b z = numer q denom q ˙ z = numer a b denom a b ˙
288 simpllr z Base Frac ring a b 0 z = a b ˙ a
289 223 288 sselid z Base Frac ring a b 0 z = a b ˙ a
290 simplr z Base Frac ring a b 0 z = a b ˙ b 0
291 290 eldifad z Base Frac ring a b 0 z = a b ˙ b
292 223 291 sselid z Base Frac ring a b 0 z = a b ˙ b
293 eldifsni b 0 b 0
294 290 293 syl z Base Frac ring a b 0 z = a b ˙ b 0
295 qdivcl a b b 0 a b
296 289 292 294 295 syl3anc z Base Frac ring a b 0 z = a b ˙ a b
297 simpr z Base Frac ring a b 0 z = a b ˙ z = a b ˙
298 146 a1i z Base Frac ring a b 0 z = a b ˙ ring CRing
299 149 a1i z Base Frac ring a b 0 z = a b ˙ 0 SubMnd mulGrp ring
300 28 29 69 30 31 32 2 298 299 erler z Base Frac ring a b 0 z = a b ˙ ˙ Er × 0
301 simpl a b 0 a
302 301 zcnd a b 0 a
303 eldifi b 0 b
304 303 adantl a b 0 b
305 304 zcnd a b 0 b
306 293 adantl a b 0 b 0
307 302 305 306 divcld a b 0 a b
308 223 301 sselid a b 0 a
309 223 304 sselid a b 0 b
310 308 309 306 295 syl3anc a b 0 a b
311 qdencl a b denom a b
312 310 311 syl a b 0 denom a b
313 312 nncnd a b 0 denom a b
314 307 313 305 mul32d a b 0 a b denom a b b = a b b denom a b
315 qmuldeneqnum a b a b denom a b = numer a b
316 310 315 syl a b 0 a b denom a b = numer a b
317 316 oveq1d a b 0 a b denom a b b = numer a b b
318 302 305 306 divcan1d a b 0 a b b = a
319 318 oveq1d a b 0 a b b denom a b = a denom a b
320 314 317 319 3eqtr3rd a b 0 a denom a b = numer a b b
321 146 a1i a b 0 ring CRing
322 qnumcl a b numer a b
323 310 322 syl a b 0 numer a b
324 simpr a b 0 b 0
325 324 39 eleqtrdi a b 0 b RLReg ring
326 312 nnzd a b 0 denom a b
327 312 nnne0d a b 0 denom a b 0
328 326 327 eldifsnd a b 0 denom a b 0
329 328 39 eleqtrdi a b 0 denom a b RLReg ring
330 28 30 114 321 301 323 325 329 fracerl a b 0 a b ˙ numer a b denom a b a denom a b = numer a b b
331 320 330 mpbird a b 0 a b ˙ numer a b denom a b
332 331 ad4ant23 z Base Frac ring a b 0 z = a b ˙ a b ˙ numer a b denom a b
333 300 332 erthi z Base Frac ring a b 0 z = a b ˙ a b ˙ = numer a b denom a b ˙
334 297 333 eqtrd z Base Frac ring a b 0 z = a b ˙ z = numer a b denom a b ˙
335 287 296 334 rspcedvdw z Base Frac ring a b 0 z = a b ˙ q z = numer q denom q ˙
336 45 eleq2i z × 0 / ˙ z Base Frac ring
337 336 biimpri z Base Frac ring z × 0 / ˙
338 337 elrlocbasi z Base Frac ring a b 0 z = a b ˙
339 335 338 r19.29vva z Base Frac ring q z = numer q denom q ˙
340 339 rgen z Base Frac ring q z = numer q denom q ˙
341 3 fompt F : onto Base Frac ring q numer q denom q ˙ Base Frac ring z Base Frac ring q z = numer q denom q ˙
342 261 340 341 mpbir2an F : onto Base Frac ring
343 df-f1o F : 1-1 onto Base Frac ring F : 1-1 Base Frac ring F : onto Base Frac ring
344 282 342 343 mpbir2an F : 1-1 onto Base Frac ring
345 167 168 isrim F Q RingIso Frac ring F Q RingHom Frac ring F : 1-1 onto Base Frac ring
346 260 344 345 mpbir2an F Q RingIso Frac ring