Metamath Proof Explorer


Theorem 1stcelcls

Description: A point belongs to the closure of a subset iff there is a sequence in the subset converging to it. Theorem 1.4-6(a) of Kreyszig p. 30. This proof uses countable choice ax-cc . A space satisfying the conclusion of this theorem is called a sequential space, so the theorem can also be stated as "every first-countable space is a sequential space". (Contributed by Mario Carneiro, 21-Mar-2015)

Ref Expression
Hypothesis 1stcelcls.1 X=J
Assertion 1stcelcls J1st𝜔SXPclsJSff:SftJP

Proof

Step Hyp Ref Expression
1 1stcelcls.1 X=J
2 simpll J1st𝜔SXPclsJSJ1st𝜔
3 1stctop J1st𝜔JTop
4 1 clsss3 JTopSXclsJSX
5 3 4 sylan J1st𝜔SXclsJSX
6 5 sselda J1st𝜔SXPclsJSPX
7 1 1stcfb J1st𝜔PXgg:JkPgkgk+1gkxJPxkgkx
8 2 6 7 syl2anc J1st𝜔SXPclsJSgg:JkPgkgk+1gkxJPxkgkx
9 simpr2 J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxkPgkgk+1gk
10 simpl Pgkgk+1gkPgk
11 10 ralimi kPgkgk+1gkkPgk
12 9 11 syl J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxkPgk
13 fveq2 k=ngk=gn
14 13 eleq2d k=nPgkPgn
15 14 rspccva kPgknPgn
16 12 15 sylan J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnPgn
17 eleq2 y=gnPyPgn
18 ineq1 y=gnyS=gnS
19 18 neeq1d y=gnySgnS
20 17 19 imbi12d y=gnPyySPgngnS
21 1 elcls2 JTopSXPclsJSPXyJPyyS
22 3 21 sylan J1st𝜔SXPclsJSPXyJPyyS
23 22 simplbda J1st𝜔SXPclsJSyJPyyS
24 23 ad2antrr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnyJPyyS
25 simpr1 J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxg:J
26 25 ffvelcdmda J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxngnJ
27 20 24 26 rspcdva J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnPgngnS
28 16 27 mpd J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxngnS
29 elin xgnSxgnxS
30 29 biancomi xgnSxSxgn
31 30 exbii xxgnSxxSxgn
32 n0 gnSxxgnS
33 df-rex xSxgnxxSxgn
34 31 32 33 3bitr4i gnSxSxgn
35 28 34 sylib J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnxSxgn
36 3 ad2antrr J1st𝜔SXPclsJSJTop
37 1 topopn JTopXJ
38 36 37 syl J1st𝜔SXPclsJSXJ
39 simplr J1st𝜔SXPclsJSSX
40 38 39 ssexd J1st𝜔SXPclsJSSV
41 fvi SVIS=S
42 40 41 syl J1st𝜔SXPclsJSIS=S
43 42 ad2antrr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnIS=S
44 43 rexeqdv J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnxISxgnxSxgn
45 35 44 mpbird J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnxISxgn
46 45 ralrimiva J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxnxISxgn
47 fvex ISV
48 nnenom ω
49 eleq1 x=fnxgnfngn
50 47 48 49 axcc4 nxISxgnff:ISnfngn
51 46 50 syl J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxff:ISnfngn
52 42 feq3d J1st𝜔SXPclsJSf:ISf:S
53 52 biimpd J1st𝜔SXPclsJSf:ISf:S
54 53 adantr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:ISf:S
55 6 ad2antrr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnPX
56 simplr3 J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnxJPxkgkx
57 eleq2 x=yPxPy
58 fveq2 k=jgk=gj
59 58 sseq1d k=jgkxgjx
60 59 cbvrexvw kgkxjgjx
61 sseq2 x=ygjxgjy
62 61 rexbidv x=yjgjxjgjy
63 60 62 bitrid x=ykgkxjgjy
64 57 63 imbi12d x=yPxkgkxPyjgjy
65 64 rspccva xJPxkgkxyJPyjgjy
66 56 65 sylan J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJPyjgjy
67 simpr Pgkgk+1gkgk+1gk
68 67 ralimi kPgkgk+1gkkgk+1gk
69 9 68 syl J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxkgk+1gk
70 69 adantr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjkgk+1gk
71 simprrr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjj
72 fveq2 n=jgn=gj
73 72 sseq1d n=jgngjgjgj
74 73 imbi2d n=jkgk+1gkjgngjkgk+1gkjgjgj
75 fveq2 n=mgn=gm
76 75 sseq1d n=mgngjgmgj
77 76 imbi2d n=mkgk+1gkjgngjkgk+1gkjgmgj
78 fveq2 n=m+1gn=gm+1
79 78 sseq1d n=m+1gngjgm+1gj
80 79 imbi2d n=m+1kgk+1gkjgngjkgk+1gkjgm+1gj
81 ssid gjgj
82 81 2a1i jkgk+1gkjgjgj
83 eluznn jmjm
84 fvoveq1 k=mgk+1=gm+1
85 fveq2 k=mgk=gm
86 84 85 sseq12d k=mgk+1gkgm+1gm
87 86 rspccva kgk+1gkmgm+1gm
88 83 87 sylan2 kgk+1gkjmjgm+1gm
89 88 anassrs kgk+1gkjmjgm+1gm
90 sstr2 gm+1gmgmgjgm+1gj
91 89 90 syl kgk+1gkjmjgmgjgm+1gj
92 91 expcom mjkgk+1gkjgmgjgm+1gj
93 92 a2d mjkgk+1gkjgmgjkgk+1gkjgm+1gj
94 74 77 80 77 82 93 uzind4 mjkgk+1gkjgmgj
95 94 com12 kgk+1gkjmjgmgj
96 95 ralrimiv kgk+1gkjmjgmgj
97 70 71 96 syl2anc J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjmjgmgj
98 fveq2 n=mfn=fm
99 98 75 eleq12d n=mfngnfmgm
100 simplr f:SnfngnyJjnfngn
101 100 ad2antlr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjmjnfngn
102 71 83 sylan J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjmjm
103 99 101 102 rspcdva J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjmjfmgm
104 103 ralrimiva J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjmjfmgm
105 r19.26 mjgmgjfmgmmjgmgjmjfmgm
106 97 104 105 sylanbrc J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjmjgmgjfmgm
107 ssel2 gmgjfmgmfmgj
108 107 ralimi mjgmgjfmgmmjfmgj
109 106 108 syl J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjmjfmgj
110 ssel gjyfmgjfmy
111 110 ralimdv gjymjfmgjmjfmy
112 109 111 syl5com J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjgjymjfmy
113 112 anassrs J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjgjymjfmy
114 113 anassrs J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjgjymjfmy
115 114 reximdva J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJjgjyjmjfmy
116 66 115 syld J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJPyjmjfmy
117 116 ralrimiva J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnyJPyjmjfmy
118 36 ad2antrr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnJTop
119 1 toptopon JTopJTopOnX
120 118 119 sylib J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnJTopOnX
121 nnuz =1
122 1zzd J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:Snfngn1
123 simprl J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:Snfngnf:S
124 39 ad2antrr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnSX
125 123 124 fssd J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:Snfngnf:X
126 eqidd J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:Snfngnmfm=fm
127 120 121 122 125 126 lmbrf J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnftJPPXyJPyjmjfmy
128 55 117 127 mpbir2and J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnftJP
129 128 expr J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:SnfngnftJP
130 129 imdistanda J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:Snfngnf:SftJP
131 54 130 syland J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxf:ISnfngnf:SftJP
132 131 eximdv J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxff:ISnfngnff:SftJP
133 51 132 mpd J1st𝜔SXPclsJSg:JkPgkgk+1gkxJPxkgkxff:SftJP
134 8 133 exlimddv J1st𝜔SXPclsJSff:SftJP
135 134 ex J1st𝜔SXPclsJSff:SftJP
136 3 ad2antrr J1st𝜔SXf:SftJPJTop
137 136 119 sylib J1st𝜔SXf:SftJPJTopOnX
138 1zzd J1st𝜔SXf:SftJP1
139 simprr J1st𝜔SXf:SftJPftJP
140 simprl J1st𝜔SXf:SftJPf:S
141 140 ffvelcdmda J1st𝜔SXf:SftJPkfkS
142 simplr J1st𝜔SXf:SftJPSX
143 121 137 138 139 141 142 lmcls J1st𝜔SXf:SftJPPclsJS
144 143 ex J1st𝜔SXf:SftJPPclsJS
145 144 exlimdv J1st𝜔SXff:SftJPPclsJS
146 135 145 impbid J1st𝜔SXPclsJSff:SftJP