Metamath Proof Explorer


Theorem ablfacrplem

Description: Lemma for ablfacrp2 . (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses ablfacrp.b B=BaseG
ablfacrp.o O=odG
ablfacrp.k K=xB|OxM
ablfacrp.l L=xB|OxN
ablfacrp.g φGAbel
ablfacrp.m φM
ablfacrp.n φN
ablfacrp.1 φMgcdN=1
ablfacrp.2 φB= M N
Assertion ablfacrplem φKgcdN=1

Proof

Step Hyp Ref Expression
1 ablfacrp.b B=BaseG
2 ablfacrp.o O=odG
3 ablfacrp.k K=xB|OxM
4 ablfacrp.l L=xB|OxN
5 ablfacrp.g φGAbel
6 ablfacrp.m φM
7 ablfacrp.n φN
8 ablfacrp.1 φMgcdN=1
9 ablfacrp.2 φB= M N
10 nprmdvds1 p¬p1
11 10 adantl φp¬p1
12 8 adantr φpMgcdN=1
13 12 breq2d φppMgcdNp1
14 11 13 mtbird φp¬pMgcdN
15 6 nnzd φM
16 2 1 oddvdssubg GAbelMxB|OxMSubGrpG
17 5 15 16 syl2anc φxB|OxMSubGrpG
18 3 17 eqeltrid φKSubGrpG
19 18 ad2antrr φppKKSubGrpG
20 eqid G𝑠K=G𝑠K
21 20 subggrp KSubGrpGG𝑠KGrp
22 19 21 syl φppKG𝑠KGrp
23 20 subgbas KSubGrpGK=BaseG𝑠K
24 19 23 syl φppKK=BaseG𝑠K
25 6 nnnn0d φM0
26 7 nnnn0d φN0
27 25 26 nn0mulcld φ M N0
28 9 27 eqeltrd φB0
29 1 fvexi BV
30 hashclb BVBFinB0
31 29 30 ax-mp BFinB0
32 28 31 sylibr φBFin
33 3 ssrab3 KB
34 ssfi BFinKBKFin
35 32 33 34 sylancl φKFin
36 35 ad2antrr φppKKFin
37 24 36 eqeltrrd φppKBaseG𝑠KFin
38 simplr φppKp
39 simpr φppKpK
40 24 fveq2d φppKK=BaseG𝑠K
41 39 40 breqtrd φppKpBaseG𝑠K
42 eqid BaseG𝑠K=BaseG𝑠K
43 eqid odG𝑠K=odG𝑠K
44 42 43 odcau G𝑠KGrpBaseG𝑠KFinppBaseG𝑠KgBaseG𝑠KodG𝑠Kg=p
45 22 37 38 41 44 syl31anc φppKgBaseG𝑠KodG𝑠Kg=p
46 24 rexeqdv φppKgKodG𝑠Kg=pgBaseG𝑠KodG𝑠Kg=p
47 45 46 mpbird φppKgKodG𝑠Kg=p
48 20 2 43 subgod KSubGrpGgKOg=odG𝑠Kg
49 19 48 sylan φppKgKOg=odG𝑠Kg
50 fveq2 x=gOx=Og
51 50 breq1d x=gOxMOgM
52 51 3 elrab2 gKgBOgM
53 52 simprbi gKOgM
54 53 adantl φppKgKOgM
55 49 54 eqbrtrrd φppKgKodG𝑠KgM
56 breq1 odG𝑠Kg=podG𝑠KgMpM
57 55 56 syl5ibcom φppKgKodG𝑠Kg=ppM
58 57 rexlimdva φppKgKodG𝑠Kg=ppM
59 47 58 mpd φppKpM
60 59 ex φppKpM
61 60 anim1d φppKpNpMpN
62 prmz pp
63 62 adantl φpp
64 hashcl KFinK0
65 35 64 syl φK0
66 65 nn0zd φK
67 66 adantr φpK
68 7 nnzd φN
69 68 adantr φpN
70 dvdsgcdb pKNpKpNpKgcdN
71 63 67 69 70 syl3anc φppKpNpKgcdN
72 15 adantr φpM
73 dvdsgcdb pMNpMpNpMgcdN
74 63 72 69 73 syl3anc φppMpNpMgcdN
75 61 71 74 3imtr3d φppKgcdNpMgcdN
76 14 75 mtod φp¬pKgcdN
77 76 nrexdv φ¬ppKgcdN
78 exprmfct KgcdN2ppKgcdN
79 77 78 nsyl φ¬KgcdN2
80 7 nnne0d φN0
81 simpr K=0N=0N=0
82 81 necon3ai N0¬K=0N=0
83 80 82 syl φ¬K=0N=0
84 gcdn0cl KN¬K=0N=0KgcdN
85 66 68 83 84 syl21anc φKgcdN
86 elnn1uz2 KgcdNKgcdN=1KgcdN2
87 85 86 sylib φKgcdN=1KgcdN2
88 87 ord φ¬KgcdN=1KgcdN2
89 79 88 mt3d φKgcdN=1