Metamath Proof Explorer


Theorem algextdeglem7

Description: Lemma for algextdeg . (Contributed by Thierry Arnoux, 2-Apr-2025)

Ref Expression
Hypotheses algextdeg.k K=E𝑠F
algextdeg.l No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
algextdeg.d D=deg1E
algextdeg.m No typesetting found for |- M = ( E minPoly F ) with typecode |-
algextdeg.f φEField
algextdeg.e φFSubDRingE
algextdeg.a φAEIntgRingF
algextdeglem.o O=EevalSub1F
algextdeglem.y P=Poly1K
algextdeglem.u U=BaseP
algextdeglem.g G=pUOpA
algextdeglem.n N=xUxP~QGZ
algextdeglem.z Z=G-10L
algextdeglem.q Q=P/𝑠P~QGZ
algextdeglem.j J=pBaseQGp
algextdeglem.r R=rem1pK
algextdeglem.h H=pUpRMA
algextdeglem.t T=deg1K-1−∞DMA
algextdeglem.x φXU
Assertion algextdeglem7 φXTHX=X

Proof

Step Hyp Ref Expression
1 algextdeg.k K=E𝑠F
2 algextdeg.l Could not format L = ( E |`s ( E fldGen ( F u. { A } ) ) ) : No typesetting found for |- L = ( E |`s ( E fldGen ( F u. { A } ) ) ) with typecode |-
3 algextdeg.d D=deg1E
4 algextdeg.m Could not format M = ( E minPoly F ) : No typesetting found for |- M = ( E minPoly F ) with typecode |-
5 algextdeg.f φEField
6 algextdeg.e φFSubDRingE
7 algextdeg.a φAEIntgRingF
8 algextdeglem.o O=EevalSub1F
9 algextdeglem.y P=Poly1K
10 algextdeglem.u U=BaseP
11 algextdeglem.g G=pUOpA
12 algextdeglem.n N=xUxP~QGZ
13 algextdeglem.z Z=G-10L
14 algextdeglem.q Q=P/𝑠P~QGZ
15 algextdeglem.j J=pBaseQGp
16 algextdeglem.r R=rem1pK
17 algextdeglem.h H=pUpRMA
18 algextdeglem.t T=deg1K-1−∞DMA
19 algextdeglem.x φXU
20 1 fveq2i Poly1K=Poly1E𝑠F
21 9 20 eqtri P=Poly1E𝑠F
22 eqid BaseE=BaseE
23 eqid 0E=0E
24 5 fldcrngd φECRing
25 sdrgsubrg FSubDRingEFSubRingE
26 6 25 syl φFSubRingE
27 8 1 22 23 24 26 irngssv φEIntgRingFBaseE
28 27 7 sseldd φABaseE
29 eqid pdomO|OpA=0E=pdomO|OpA=0E
30 eqid RSpanP=RSpanP
31 eqid idlGen1pE𝑠F=idlGen1pE𝑠F
32 8 21 22 5 6 28 23 29 30 31 4 minplycl φMABaseP
33 32 10 eleqtrrdi φMAU
34 1 3 9 10 33 26 ressdeg1 φDMA=deg1KMA
35 34 breq2d φdeg1KX<DMAdeg1KX<deg1KMA
36 eqid deg1K=deg1K
37 5 flddrngd φEDivRing
38 37 drngringd φERing
39 eqid Poly1E=Poly1E
40 eqid PwSer1K=PwSer1K
41 eqid BasePwSer1K=BasePwSer1K
42 eqid BasePoly1E=BasePoly1E
43 39 1 9 10 26 40 41 42 ressply1bas2 φU=BasePwSer1KBasePoly1E
44 inss2 BasePwSer1KBasePoly1EBasePoly1E
45 43 44 eqsstrdi φUBasePoly1E
46 45 33 sseldd φMABasePoly1E
47 eqid 0Poly1E=0Poly1E
48 47 5 6 4 7 irngnminplynz φMA0Poly1E
49 3 39 47 42 deg1nn0cl ERingMABasePoly1EMA0Poly1EDMA0
50 38 46 48 49 syl3anc φDMA0
51 fldsdrgfld EFieldFSubDRingEE𝑠FField
52 5 6 51 syl2anc φE𝑠FField
53 1 52 eqeltrid φKField
54 fldidom KFieldKIDomn
55 53 54 syl φKIDomn
56 55 idomringd φKRing
57 9 36 18 50 56 10 ply1degleel φXTXUdeg1KX<DMA
58 19 57 mpbirand φXTdeg1KX<DMA
59 eqid Unic1pK=Unic1pK
60 1 fveq2i Monic1pK=Monic1pE𝑠F
61 47 5 6 4 7 60 minplym1p φMAMonic1pK
62 eqid Monic1pK=Monic1pK
63 59 62 mon1puc1p KRingMAMonic1pKMAUnic1pK
64 56 61 63 syl2anc φMAUnic1pK
65 9 10 59 16 55 36 19 64 r1pid2 φXRMA=Xdeg1KX<deg1KMA
66 35 58 65 3bitr4d φXTXRMA=X
67 oveq1 p=XpRMA=XRMA
68 ovexd φXRMAV
69 17 67 19 68 fvmptd3 φHX=XRMA
70 69 eqeq1d φHX=XXRMA=X
71 66 70 bitr4d φXTHX=X