Metamath Proof Explorer


Theorem ang180lem2

Description: Lemma for ang180 . Show that the revolution number N is strictly between -u 2 and 1 . Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl , but the resulting bound gives only N <_ 1 for the upper bound. The case N = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments A , 1 / ( 1 - A ) , ( A - 1 ) / A must lie on the negative real axis, which is a contradiction because clearly if A is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypotheses ang.1 F=x0,y0logyx
ang180lem1.2 T=log11A+logA1A+logA
ang180lem1.3 N=Ti2π12
Assertion ang180lem2 AA0A12<NN<1

Proof

Step Hyp Ref Expression
1 ang.1 F=x0,y0logyx
2 ang180lem1.2 T=log11A+logA1A+logA
3 ang180lem1.3 N=Ti2π12
4 2cn 2
5 1re 1
6 5 rehalfcli 12
7 6 recni 12
8 4 7 negsubdii 212=-2+12
9 4d2e2 42=2
10 9 oveq1i 4212=212
11 4cn 4
12 ax-1cn 1
13 2cnne0 220
14 divsubdir 41220412=4212
15 11 12 13 14 mp3an 412=4212
16 4m1e3 41=3
17 16 oveq1i 412=32
18 15 17 eqtr3i 4212=32
19 10 18 eqtr3i 212=32
20 19 negeqi 212=32
21 8 20 eqtr3i -2+12=32
22 3re 3
23 22 rehalfcli 32
24 23 recni 32
25 picn π
26 24 4 25 mulassi 322π=322π
27 3cn 3
28 2ne0 20
29 27 4 28 divcan1i 322=3
30 29 oveq1i 322π=3π
31 26 30 eqtr3i 322π=3π
32 31 negeqi 322π=3π
33 2re 2
34 pire π
35 33 34 remulcli 2π
36 35 recni 2π
37 24 36 mulneg1i 322π=322π
38 27 25 mulneg2i 3π=3π
39 32 37 38 3eqtr4i 322π=3π
40 34 renegcli π
41 33 40 remulcli 2π
42 41 a1i AA0A12π
43 40 a1i AA0A1π
44 simp1 AA0A1A
45 subcl 1A1A
46 12 44 45 sylancr AA0A11A
47 simp3 AA0A1A1
48 47 necomd AA0A11A
49 subeq0 1A1A=01=A
50 12 44 49 sylancr AA0A11A=01=A
51 50 necon3bid AA0A11A01A
52 48 51 mpbird AA0A11A0
53 46 52 reccld AA0A111A
54 46 52 recne0d AA0A111A0
55 53 54 logcld AA0A1log11A
56 subcl A1A1
57 44 12 56 sylancl AA0A1A1
58 simp2 AA0A1A0
59 57 44 58 divcld AA0A1A1A
60 subeq0 A1A1=0A=1
61 44 12 60 sylancl AA0A1A1=0A=1
62 61 necon3bid AA0A1A10A1
63 47 62 mpbird AA0A1A10
64 57 44 63 58 divne0d AA0A1A1A0
65 59 64 logcld AA0A1logA1A
66 55 65 addcld AA0A1log11A+logA1A
67 66 imcld AA0A1log11A+logA1A
68 logcl AA0logA
69 68 3adant3 AA0A1logA
70 69 imcld AA0A1logA
71 55 imcld AA0A1log11A
72 65 imcld AA0A1logA1A
73 53 54 logimcld AA0A1π<log11Alog11Aπ
74 73 simpld AA0A1π<log11A
75 59 64 logimcld AA0A1π<logA1AlogA1Aπ
76 75 simpld AA0A1π<logA1A
77 43 43 71 72 74 76 lt2addd AA0A1-π+π<log11A+logA1A
78 negpicn π
79 78 2timesi 2π=-π+π
80 79 a1i AA0A12π=-π+π
81 55 65 imaddd AA0A1log11A+logA1A=log11A+logA1A
82 77 80 81 3brtr4d AA0A12π<log11A+logA1A
83 logimcl AA0π<logAlogAπ
84 83 3adant3 AA0A1π<logAlogAπ
85 84 simpld AA0A1π<logA
86 42 43 67 70 82 85 lt2addd AA0A12π+π<log11A+logA1A+logA
87 df-3 3=2+1
88 87 oveq1i 3π=2+1π
89 4 12 78 adddiri 2+1π=2π+1π
90 78 mullidi 1π=π
91 90 oveq2i 2π+1π=2π+π
92 88 89 91 3eqtri 3π=2π+π
93 92 a1i AA0A13π=2π+π
94 2 fveq2i T=log11A+logA1A+logA
95 66 69 imaddd AA0A1log11A+logA1A+logA=log11A+logA1A+logA
96 94 95 eqtrid AA0A1T=log11A+logA1A+logA
97 86 93 96 3brtr4d AA0A13π<T
98 66 69 addcld AA0A1log11A+logA1A+logA
99 2 98 eqeltrid AA0A1T
100 imval TT=Ti
101 99 100 syl AA0A1T=Ti
102 1 2 3 ang180lem1 AA0A1NTi
103 102 simprd AA0A1Ti
104 103 rered AA0A1Ti=Ti
105 101 104 eqtrd AA0A1T=Ti
106 97 105 breqtrd AA0A13π<Ti
107 39 106 eqbrtrid AA0A1322π<Ti
108 23 renegcli 32
109 108 a1i AA0A132
110 35 a1i AA0A12π
111 2pos 0<2
112 pipos 0<π
113 33 34 111 112 mulgt0ii 0<2π
114 113 a1i AA0A10<2π
115 ltmuldiv 32Ti2π0<2π322π<Ti32<Ti2π
116 109 103 110 114 115 syl112anc AA0A1322π<Ti32<Ti2π
117 107 116 mpbid AA0A132<Ti2π
118 21 117 eqbrtrid AA0A1-2+12<Ti2π
119 33 renegcli 2
120 119 a1i AA0A12
121 6 a1i AA0A112
122 35 113 gt0ne0ii 2π0
123 122 a1i AA0A12π0
124 103 110 123 redivcld AA0A1Ti2π
125 120 121 124 ltaddsubd AA0A1-2+12<Ti2π2<Ti2π12
126 118 125 mpbid AA0A12<Ti2π12
127 126 3 breqtrrdi AA0A12<N
128 34 a1i AA0A1π
129 73 simprd AA0A1log11Aπ
130 75 simprd AA0A1logA1Aπ
131 71 72 128 128 129 130 le2addd AA0A1log11A+logA1Aπ+π
132 25 2timesi 2π=π+π
133 132 a1i AA0A12π=π+π
134 131 81 133 3brtr4d AA0A1log11A+logA1A2π
135 84 simprd AA0A1logAπ
136 67 70 110 128 134 135 le2addd AA0A1log11A+logA1A+logA2π+π
137 105 96 eqtr3d AA0A1Ti=log11A+logA1A+logA
138 87 oveq1i 3π=2+1π
139 4 12 25 adddiri 2+1π=2π+1π
140 25 mullidi 1π=π
141 140 oveq2i 2π+1π=2π+π
142 138 139 141 3eqtri 3π=2π+π
143 142 a1i AA0A13π=2π+π
144 136 137 143 3brtr4d AA0A1Ti3π
145 36 subid1i 2π0=2π
146 145 122 eqnetri 2π00
147 negsub 1A1+A=1A
148 12 44 147 sylancr AA0A11+A=1A
149 148 adantr AA0A13π=Ti1+A=1A
150 1rp 1+
151 143 137 oveq12d AA0A13πTi=2π+π-log11A+logA1A+logA
152 36 a1i AA0A12π
153 25 a1i AA0A1π
154 67 recnd AA0A1log11A+logA1A
155 70 recnd AA0A1logA
156 152 153 154 155 addsub4d AA0A12π+π-log11A+logA1A+logA=2πlog11A+logA1A+π-logA
157 151 156 eqtrd AA0A13πTi=2πlog11A+logA1A+π-logA
158 157 adantr AA0A13π=Ti3πTi=2πlog11A+logA1A+π-logA
159 22 34 remulcli 3π
160 159 recni 3π
161 ax-icn i
162 161 a1i AA0A1i
163 ine0 i0
164 163 a1i AA0A1i0
165 99 162 164 divcld AA0A1Ti
166 subeq0 3πTi3πTi=03π=Ti
167 160 165 166 sylancr AA0A13πTi=03π=Ti
168 167 biimpar AA0A13π=Ti3πTi=0
169 158 168 eqtr3d AA0A13π=Ti2πlog11A+logA1A+π-logA=0
170 resubcl 2πlog11A+logA1A2πlog11A+logA1A
171 35 67 170 sylancr AA0A12πlog11A+logA1A
172 subge0 2πlog11A+logA1A02πlog11A+logA1Alog11A+logA1A2π
173 35 67 172 sylancr AA0A102πlog11A+logA1Alog11A+logA1A2π
174 134 173 mpbird AA0A102πlog11A+logA1A
175 resubcl πlogAπlogA
176 34 70 175 sylancr AA0A1πlogA
177 subge0 πlogA0πlogAlogAπ
178 34 70 177 sylancr AA0A10πlogAlogAπ
179 135 178 mpbird AA0A10πlogA
180 add20 2πlog11A+logA1A02πlog11A+logA1AπlogA0πlogA2πlog11A+logA1A+π-logA=02πlog11A+logA1A=0πlogA=0
181 171 174 176 179 180 syl22anc AA0A12πlog11A+logA1A+π-logA=02πlog11A+logA1A=0πlogA=0
182 181 biimpa AA0A12πlog11A+logA1A+π-logA=02πlog11A+logA1A=0πlogA=0
183 169 182 syldan AA0A13π=Ti2πlog11A+logA1A=0πlogA=0
184 183 simprd AA0A13π=TiπlogA=0
185 155 adantr AA0A13π=TilogA
186 subeq0 πlogAπlogA=0π=logA
187 25 185 186 sylancr AA0A13π=TiπlogA=0π=logA
188 184 187 mpbid AA0A13π=Tiπ=logA
189 188 eqcomd AA0A13π=TilogA=π
190 lognegb AA0A+logA=π
191 190 3adant3 AA0A1A+logA=π
192 191 adantr AA0A13π=TiA+logA=π
193 189 192 mpbird AA0A13π=TiA+
194 rpaddcl 1+A+1+A+
195 150 193 194 sylancr AA0A13π=Ti1+A+
196 149 195 eqeltrrd AA0A13π=Ti1A+
197 196 rpreccld AA0A13π=Ti11A+
198 197 relogcld AA0A13π=Tilog11A
199 negsubdi2 A1A1=1A
200 44 12 199 sylancl AA0A1A1=1A
201 200 oveq1d AA0A1A1A=1AA
202 57 44 58 div2negd AA0A1A1A=A1A
203 201 202 eqtr3d AA0A11AA=A1A
204 203 adantr AA0A13π=Ti1AA=A1A
205 196 193 rpdivcld AA0A13π=Ti1AA+
206 204 205 eqeltrrd AA0A13π=TiA1A+
207 206 relogcld AA0A13π=TilogA1A
208 198 207 readdcld AA0A13π=Tilog11A+logA1A
209 208 reim0d AA0A13π=Tilog11A+logA1A=0
210 209 oveq2d AA0A13π=Ti2πlog11A+logA1A=2π0
211 183 simpld AA0A13π=Ti2πlog11A+logA1A=0
212 210 211 eqtr3d AA0A13π=Ti2π0=0
213 212 ex AA0A13π=Ti2π0=0
214 213 necon3d AA0A12π003πTi
215 146 214 mpi AA0A13πTi
216 ltlen Ti3πTi<3πTi3π3πTi
217 103 159 216 sylancl AA0A1Ti<3πTi3π3πTi
218 144 215 217 mpbir2and AA0A1Ti<3π
219 218 31 breqtrrdi AA0A1Ti<322π
220 23 a1i AA0A132
221 ltdivmul2 Ti322π0<2πTi2π<32Ti<322π
222 103 220 110 114 221 syl112anc AA0A1Ti2π<32Ti<322π
223 219 222 mpbird AA0A1Ti2π<32
224 87 oveq1i 32=2+12
225 4 12 4 28 divdiri 2+12=22+12
226 2div2e1 22=1
227 226 oveq1i 22+12=1+12
228 224 225 227 3eqtri 32=1+12
229 223 228 breqtrdi AA0A1Ti2π<1+12
230 5 a1i AA0A11
231 124 121 230 ltsubaddd AA0A1Ti2π12<1Ti2π<1+12
232 229 231 mpbird AA0A1Ti2π12<1
233 3 232 eqbrtrid AA0A1N<1
234 127 233 jca AA0A12<NN<1