Metamath Proof Explorer


Theorem ang180lem2

Description: Lemma for ang180 . Show that the revolution number N is strictly between -u 2 and 1 . Both bounds are established by iterating using the bounds on the imaginary part of the logarithm, logimcl , but the resulting bound gives only N <_ 1 for the upper bound. The case N = 1 is not ruled out here, but it is in some sense an "edge case" that can only happen under very specific conditions; in particular we show that all the angle arguments A , 1 / ( 1 - A ) , ( A - 1 ) / A must lie on the negative real axis, which is a contradiction because clearly if A is negative then the other two are positive real. (Contributed by Mario Carneiro, 23-Sep-2014)

Ref Expression
Hypotheses ang.1 F = x 0 , y 0 log y x
ang180lem1.2 T = log 1 1 A + log A 1 A + log A
ang180lem1.3 N = T i 2 π 1 2
Assertion ang180lem2 A A 0 A 1 2 < N N < 1

Proof

Step Hyp Ref Expression
1 ang.1 F = x 0 , y 0 log y x
2 ang180lem1.2 T = log 1 1 A + log A 1 A + log A
3 ang180lem1.3 N = T i 2 π 1 2
4 2cn 2
5 1re 1
6 5 rehalfcli 1 2
7 6 recni 1 2
8 4 7 negsubdii 2 1 2 = - 2 + 1 2
9 4d2e2 4 2 = 2
10 9 oveq1i 4 2 1 2 = 2 1 2
11 4cn 4
12 ax-1cn 1
13 2cnne0 2 2 0
14 divsubdir 4 1 2 2 0 4 1 2 = 4 2 1 2
15 11 12 13 14 mp3an 4 1 2 = 4 2 1 2
16 4m1e3 4 1 = 3
17 16 oveq1i 4 1 2 = 3 2
18 15 17 eqtr3i 4 2 1 2 = 3 2
19 10 18 eqtr3i 2 1 2 = 3 2
20 19 negeqi 2 1 2 = 3 2
21 8 20 eqtr3i - 2 + 1 2 = 3 2
22 3re 3
23 22 rehalfcli 3 2
24 23 recni 3 2
25 picn π
26 24 4 25 mulassi 3 2 2 π = 3 2 2 π
27 3cn 3
28 2ne0 2 0
29 27 4 28 divcan1i 3 2 2 = 3
30 29 oveq1i 3 2 2 π = 3 π
31 26 30 eqtr3i 3 2 2 π = 3 π
32 31 negeqi 3 2 2 π = 3 π
33 2re 2
34 pire π
35 33 34 remulcli 2 π
36 35 recni 2 π
37 24 36 mulneg1i 3 2 2 π = 3 2 2 π
38 27 25 mulneg2i 3 π = 3 π
39 32 37 38 3eqtr4i 3 2 2 π = 3 π
40 34 renegcli π
41 33 40 remulcli 2 π
42 41 a1i A A 0 A 1 2 π
43 40 a1i A A 0 A 1 π
44 simp1 A A 0 A 1 A
45 subcl 1 A 1 A
46 12 44 45 sylancr A A 0 A 1 1 A
47 simp3 A A 0 A 1 A 1
48 47 necomd A A 0 A 1 1 A
49 subeq0 1 A 1 A = 0 1 = A
50 12 44 49 sylancr A A 0 A 1 1 A = 0 1 = A
51 50 necon3bid A A 0 A 1 1 A 0 1 A
52 48 51 mpbird A A 0 A 1 1 A 0
53 46 52 reccld A A 0 A 1 1 1 A
54 46 52 recne0d A A 0 A 1 1 1 A 0
55 53 54 logcld A A 0 A 1 log 1 1 A
56 subcl A 1 A 1
57 44 12 56 sylancl A A 0 A 1 A 1
58 simp2 A A 0 A 1 A 0
59 57 44 58 divcld A A 0 A 1 A 1 A
60 subeq0 A 1 A 1 = 0 A = 1
61 44 12 60 sylancl A A 0 A 1 A 1 = 0 A = 1
62 61 necon3bid A A 0 A 1 A 1 0 A 1
63 47 62 mpbird A A 0 A 1 A 1 0
64 57 44 63 58 divne0d A A 0 A 1 A 1 A 0
65 59 64 logcld A A 0 A 1 log A 1 A
66 55 65 addcld A A 0 A 1 log 1 1 A + log A 1 A
67 66 imcld A A 0 A 1 log 1 1 A + log A 1 A
68 logcl A A 0 log A
69 68 3adant3 A A 0 A 1 log A
70 69 imcld A A 0 A 1 log A
71 55 imcld A A 0 A 1 log 1 1 A
72 65 imcld A A 0 A 1 log A 1 A
73 53 54 logimcld A A 0 A 1 π < log 1 1 A log 1 1 A π
74 73 simpld A A 0 A 1 π < log 1 1 A
75 59 64 logimcld A A 0 A 1 π < log A 1 A log A 1 A π
76 75 simpld A A 0 A 1 π < log A 1 A
77 43 43 71 72 74 76 lt2addd A A 0 A 1 - π + π < log 1 1 A + log A 1 A
78 negpicn π
79 78 2timesi 2 π = - π + π
80 79 a1i A A 0 A 1 2 π = - π + π
81 55 65 imaddd A A 0 A 1 log 1 1 A + log A 1 A = log 1 1 A + log A 1 A
82 77 80 81 3brtr4d A A 0 A 1 2 π < log 1 1 A + log A 1 A
83 logimcl A A 0 π < log A log A π
84 83 3adant3 A A 0 A 1 π < log A log A π
85 84 simpld A A 0 A 1 π < log A
86 42 43 67 70 82 85 lt2addd A A 0 A 1 2 π + π < log 1 1 A + log A 1 A + log A
87 df-3 3 = 2 + 1
88 87 oveq1i 3 π = 2 + 1 π
89 4 12 78 adddiri 2 + 1 π = 2 π + 1 π
90 78 mulid2i 1 π = π
91 90 oveq2i 2 π + 1 π = 2 π + π
92 88 89 91 3eqtri 3 π = 2 π + π
93 92 a1i A A 0 A 1 3 π = 2 π + π
94 2 fveq2i T = log 1 1 A + log A 1 A + log A
95 66 69 imaddd A A 0 A 1 log 1 1 A + log A 1 A + log A = log 1 1 A + log A 1 A + log A
96 94 95 eqtrid A A 0 A 1 T = log 1 1 A + log A 1 A + log A
97 86 93 96 3brtr4d A A 0 A 1 3 π < T
98 66 69 addcld A A 0 A 1 log 1 1 A + log A 1 A + log A
99 2 98 eqeltrid A A 0 A 1 T
100 imval T T = T i
101 99 100 syl A A 0 A 1 T = T i
102 1 2 3 ang180lem1 A A 0 A 1 N T i
103 102 simprd A A 0 A 1 T i
104 103 rered A A 0 A 1 T i = T i
105 101 104 eqtrd A A 0 A 1 T = T i
106 97 105 breqtrd A A 0 A 1 3 π < T i
107 39 106 eqbrtrid A A 0 A 1 3 2 2 π < T i
108 23 renegcli 3 2
109 108 a1i A A 0 A 1 3 2
110 35 a1i A A 0 A 1 2 π
111 2pos 0 < 2
112 pipos 0 < π
113 33 34 111 112 mulgt0ii 0 < 2 π
114 113 a1i A A 0 A 1 0 < 2 π
115 ltmuldiv 3 2 T i 2 π 0 < 2 π 3 2 2 π < T i 3 2 < T i 2 π
116 109 103 110 114 115 syl112anc A A 0 A 1 3 2 2 π < T i 3 2 < T i 2 π
117 107 116 mpbid A A 0 A 1 3 2 < T i 2 π
118 21 117 eqbrtrid A A 0 A 1 - 2 + 1 2 < T i 2 π
119 33 renegcli 2
120 119 a1i A A 0 A 1 2
121 6 a1i A A 0 A 1 1 2
122 35 113 gt0ne0ii 2 π 0
123 122 a1i A A 0 A 1 2 π 0
124 103 110 123 redivcld A A 0 A 1 T i 2 π
125 120 121 124 ltaddsubd A A 0 A 1 - 2 + 1 2 < T i 2 π 2 < T i 2 π 1 2
126 118 125 mpbid A A 0 A 1 2 < T i 2 π 1 2
127 126 3 breqtrrdi A A 0 A 1 2 < N
128 34 a1i A A 0 A 1 π
129 73 simprd A A 0 A 1 log 1 1 A π
130 75 simprd A A 0 A 1 log A 1 A π
131 71 72 128 128 129 130 le2addd A A 0 A 1 log 1 1 A + log A 1 A π + π
132 25 2timesi 2 π = π + π
133 132 a1i A A 0 A 1 2 π = π + π
134 131 81 133 3brtr4d A A 0 A 1 log 1 1 A + log A 1 A 2 π
135 84 simprd A A 0 A 1 log A π
136 67 70 110 128 134 135 le2addd A A 0 A 1 log 1 1 A + log A 1 A + log A 2 π + π
137 105 96 eqtr3d A A 0 A 1 T i = log 1 1 A + log A 1 A + log A
138 87 oveq1i 3 π = 2 + 1 π
139 4 12 25 adddiri 2 + 1 π = 2 π + 1 π
140 25 mulid2i 1 π = π
141 140 oveq2i 2 π + 1 π = 2 π + π
142 138 139 141 3eqtri 3 π = 2 π + π
143 142 a1i A A 0 A 1 3 π = 2 π + π
144 136 137 143 3brtr4d A A 0 A 1 T i 3 π
145 36 subid1i 2 π 0 = 2 π
146 145 122 eqnetri 2 π 0 0
147 negsub 1 A 1 + A = 1 A
148 12 44 147 sylancr A A 0 A 1 1 + A = 1 A
149 148 adantr A A 0 A 1 3 π = T i 1 + A = 1 A
150 1rp 1 +
151 143 137 oveq12d A A 0 A 1 3 π T i = 2 π + π - log 1 1 A + log A 1 A + log A
152 36 a1i A A 0 A 1 2 π
153 25 a1i A A 0 A 1 π
154 67 recnd A A 0 A 1 log 1 1 A + log A 1 A
155 70 recnd A A 0 A 1 log A
156 152 153 154 155 addsub4d A A 0 A 1 2 π + π - log 1 1 A + log A 1 A + log A = 2 π log 1 1 A + log A 1 A + π - log A
157 151 156 eqtrd A A 0 A 1 3 π T i = 2 π log 1 1 A + log A 1 A + π - log A
158 157 adantr A A 0 A 1 3 π = T i 3 π T i = 2 π log 1 1 A + log A 1 A + π - log A
159 22 34 remulcli 3 π
160 159 recni 3 π
161 ax-icn i
162 161 a1i A A 0 A 1 i
163 ine0 i 0
164 163 a1i A A 0 A 1 i 0
165 99 162 164 divcld A A 0 A 1 T i
166 subeq0 3 π T i 3 π T i = 0 3 π = T i
167 160 165 166 sylancr A A 0 A 1 3 π T i = 0 3 π = T i
168 167 biimpar A A 0 A 1 3 π = T i 3 π T i = 0
169 158 168 eqtr3d A A 0 A 1 3 π = T i 2 π log 1 1 A + log A 1 A + π - log A = 0
170 resubcl 2 π log 1 1 A + log A 1 A 2 π log 1 1 A + log A 1 A
171 35 67 170 sylancr A A 0 A 1 2 π log 1 1 A + log A 1 A
172 subge0 2 π log 1 1 A + log A 1 A 0 2 π log 1 1 A + log A 1 A log 1 1 A + log A 1 A 2 π
173 35 67 172 sylancr A A 0 A 1 0 2 π log 1 1 A + log A 1 A log 1 1 A + log A 1 A 2 π
174 134 173 mpbird A A 0 A 1 0 2 π log 1 1 A + log A 1 A
175 resubcl π log A π log A
176 34 70 175 sylancr A A 0 A 1 π log A
177 subge0 π log A 0 π log A log A π
178 34 70 177 sylancr A A 0 A 1 0 π log A log A π
179 135 178 mpbird A A 0 A 1 0 π log A
180 add20 2 π log 1 1 A + log A 1 A 0 2 π log 1 1 A + log A 1 A π log A 0 π log A 2 π log 1 1 A + log A 1 A + π - log A = 0 2 π log 1 1 A + log A 1 A = 0 π log A = 0
181 171 174 176 179 180 syl22anc A A 0 A 1 2 π log 1 1 A + log A 1 A + π - log A = 0 2 π log 1 1 A + log A 1 A = 0 π log A = 0
182 181 biimpa A A 0 A 1 2 π log 1 1 A + log A 1 A + π - log A = 0 2 π log 1 1 A + log A 1 A = 0 π log A = 0
183 169 182 syldan A A 0 A 1 3 π = T i 2 π log 1 1 A + log A 1 A = 0 π log A = 0
184 183 simprd A A 0 A 1 3 π = T i π log A = 0
185 155 adantr A A 0 A 1 3 π = T i log A
186 subeq0 π log A π log A = 0 π = log A
187 25 185 186 sylancr A A 0 A 1 3 π = T i π log A = 0 π = log A
188 184 187 mpbid A A 0 A 1 3 π = T i π = log A
189 188 eqcomd A A 0 A 1 3 π = T i log A = π
190 lognegb A A 0 A + log A = π
191 190 3adant3 A A 0 A 1 A + log A = π
192 191 adantr A A 0 A 1 3 π = T i A + log A = π
193 189 192 mpbird A A 0 A 1 3 π = T i A +
194 rpaddcl 1 + A + 1 + A +
195 150 193 194 sylancr A A 0 A 1 3 π = T i 1 + A +
196 149 195 eqeltrrd A A 0 A 1 3 π = T i 1 A +
197 196 rpreccld A A 0 A 1 3 π = T i 1 1 A +
198 197 relogcld A A 0 A 1 3 π = T i log 1 1 A
199 negsubdi2 A 1 A 1 = 1 A
200 44 12 199 sylancl A A 0 A 1 A 1 = 1 A
201 200 oveq1d A A 0 A 1 A 1 A = 1 A A
202 57 44 58 div2negd A A 0 A 1 A 1 A = A 1 A
203 201 202 eqtr3d A A 0 A 1 1 A A = A 1 A
204 203 adantr A A 0 A 1 3 π = T i 1 A A = A 1 A
205 196 193 rpdivcld A A 0 A 1 3 π = T i 1 A A +
206 204 205 eqeltrrd A A 0 A 1 3 π = T i A 1 A +
207 206 relogcld A A 0 A 1 3 π = T i log A 1 A
208 198 207 readdcld A A 0 A 1 3 π = T i log 1 1 A + log A 1 A
209 208 reim0d A A 0 A 1 3 π = T i log 1 1 A + log A 1 A = 0
210 209 oveq2d A A 0 A 1 3 π = T i 2 π log 1 1 A + log A 1 A = 2 π 0
211 183 simpld A A 0 A 1 3 π = T i 2 π log 1 1 A + log A 1 A = 0
212 210 211 eqtr3d A A 0 A 1 3 π = T i 2 π 0 = 0
213 212 ex A A 0 A 1 3 π = T i 2 π 0 = 0
214 213 necon3d A A 0 A 1 2 π 0 0 3 π T i
215 146 214 mpi A A 0 A 1 3 π T i
216 ltlen T i 3 π T i < 3 π T i 3 π 3 π T i
217 103 159 216 sylancl A A 0 A 1 T i < 3 π T i 3 π 3 π T i
218 144 215 217 mpbir2and A A 0 A 1 T i < 3 π
219 218 31 breqtrrdi A A 0 A 1 T i < 3 2 2 π
220 23 a1i A A 0 A 1 3 2
221 ltdivmul2 T i 3 2 2 π 0 < 2 π T i 2 π < 3 2 T i < 3 2 2 π
222 103 220 110 114 221 syl112anc A A 0 A 1 T i 2 π < 3 2 T i < 3 2 2 π
223 219 222 mpbird A A 0 A 1 T i 2 π < 3 2
224 87 oveq1i 3 2 = 2 + 1 2
225 4 12 4 28 divdiri 2 + 1 2 = 2 2 + 1 2
226 2div2e1 2 2 = 1
227 226 oveq1i 2 2 + 1 2 = 1 + 1 2
228 224 225 227 3eqtri 3 2 = 1 + 1 2
229 223 228 breqtrdi A A 0 A 1 T i 2 π < 1 + 1 2
230 5 a1i A A 0 A 1 1
231 124 121 230 ltsubaddd A A 0 A 1 T i 2 π 1 2 < 1 T i 2 π < 1 + 1 2
232 229 231 mpbird A A 0 A 1 T i 2 π 1 2 < 1
233 3 232 eqbrtrid A A 0 A 1 N < 1
234 127 233 jca A A 0 A 1 2 < N N < 1