Metamath Proof Explorer


Theorem baerlem3lem1

Description: Lemma for baerlem3 . (Contributed by NM, 9-Apr-2015)

Ref Expression
Hypotheses baerlem3.v V=BaseW
baerlem3.m -˙=-W
baerlem3.o 0˙=0W
baerlem3.s ˙=LSSumW
baerlem3.n N=LSpanW
baerlem3.w φWLVec
baerlem3.x φXV
baerlem3.c φ¬XNYZ
baerlem3.d φNYNZ
baerlem3.y φYV0˙
baerlem3.z φZV0˙
baerlem3.p +˙=+W
baerlem3.t ·˙=W
baerlem3.r R=ScalarW
baerlem3.b B=BaseR
baerlem3.a ˙=+R
baerlem3.l L=-R
baerlem3.q Q=0R
baerlem3.i I=invgR
baerlem3.a1 φaB
baerlem3.b1 φbB
baerlem3.d1 φdB
baerlem3.e1 φeB
baerlem3.j1 φj=a·˙Y+˙b·˙Z
baerlem3.j2 φj=d·˙X-˙Y+˙e·˙X-˙Z
Assertion baerlem3lem1 φj=a·˙Y-˙Z

Proof

Step Hyp Ref Expression
1 baerlem3.v V=BaseW
2 baerlem3.m -˙=-W
3 baerlem3.o 0˙=0W
4 baerlem3.s ˙=LSSumW
5 baerlem3.n N=LSpanW
6 baerlem3.w φWLVec
7 baerlem3.x φXV
8 baerlem3.c φ¬XNYZ
9 baerlem3.d φNYNZ
10 baerlem3.y φYV0˙
11 baerlem3.z φZV0˙
12 baerlem3.p +˙=+W
13 baerlem3.t ·˙=W
14 baerlem3.r R=ScalarW
15 baerlem3.b B=BaseR
16 baerlem3.a ˙=+R
17 baerlem3.l L=-R
18 baerlem3.q Q=0R
19 baerlem3.i I=invgR
20 baerlem3.a1 φaB
21 baerlem3.b1 φbB
22 baerlem3.d1 φdB
23 baerlem3.e1 φeB
24 baerlem3.j1 φj=a·˙Y+˙b·˙Z
25 baerlem3.j2 φj=d·˙X-˙Y+˙e·˙X-˙Z
26 lveclmod WLVecWLMod
27 6 26 syl φWLMod
28 10 eldifad φYV
29 1 14 13 15 lmodvscl WLModaBYVa·˙YV
30 27 20 28 29 syl3anc φa·˙YV
31 11 eldifad φZV
32 1 14 13 15 lmodvscl WLModaBZVa·˙ZV
33 27 20 31 32 syl3anc φa·˙ZV
34 eqid 1R=1R
35 1 12 2 14 13 19 34 lmodvsubval2 WLModa·˙YVa·˙ZVa·˙Y-˙a·˙Z=a·˙Y+˙I1R·˙a·˙Z
36 27 30 33 35 syl3anc φa·˙Y-˙a·˙Z=a·˙Y+˙I1R·˙a·˙Z
37 1 13 14 15 2 27 20 28 31 lmodsubdi φa·˙Y-˙Z=a·˙Y-˙a·˙Z
38 14 lmodring WLModRRing
39 27 38 syl φRRing
40 ringgrp RRingRGrp
41 39 40 syl φRGrp
42 14 15 34 lmod1cl WLMod1RB
43 27 42 syl φ1RB
44 15 19 grpinvcl RGrp1RBI1RB
45 41 43 44 syl2anc φI1RB
46 eqid R=R
47 1 14 13 15 46 lmodvsass WLModI1RBaBZVI1RRa·˙Z=I1R·˙a·˙Z
48 27 45 20 31 47 syl13anc φI1RRa·˙Z=I1R·˙a·˙Z
49 15 46 34 19 39 20 ringnegl φI1RRa=Ia
50 ringabl RRingRAbel
51 39 50 syl φRAbel
52 15 16 19 ablinvadd RAbeldBeBId˙e=Id˙Ie
53 51 22 23 52 syl3anc φId˙e=Id˙Ie
54 eqid LSubSpW=LSubSpW
55 1 54 5 27 28 31 lspprcl φNYZLSubSpW
56 1 12 13 14 15 5 27 20 21 28 31 lsppreli φa·˙Y+˙b·˙ZNYZ
57 1 12 13 14 15 5 27 22 23 28 31 lsppreli φd·˙Y+˙e·˙ZNYZ
58 eqid invgW=invgW
59 54 58 lssvnegcl WLModNYZLSubSpWd·˙Y+˙e·˙ZNYZinvgWd·˙Y+˙e·˙ZNYZ
60 27 55 57 59 syl3anc φinvgWd·˙Y+˙e·˙ZNYZ
61 15 18 ring0cl RRingQB
62 39 61 syl φQB
63 15 16 ringacl RRingdBeBd˙eB
64 39 22 23 63 syl3anc φd˙eB
65 1 14 13 18 3 lmod0vs WLModXVQ·˙X=0˙
66 27 7 65 syl2anc φQ·˙X=0˙
67 66 oveq1d φQ·˙X+˙a·˙Y+˙b·˙Z=0˙+˙a·˙Y+˙b·˙Z
68 lmodgrp WLModWGrp
69 27 68 syl φWGrp
70 1 14 13 15 lmodvscl WLModbBZVb·˙ZV
71 27 21 31 70 syl3anc φb·˙ZV
72 1 12 lmodvacl WLModa·˙YVb·˙ZVa·˙Y+˙b·˙ZV
73 27 30 71 72 syl3anc φa·˙Y+˙b·˙ZV
74 1 12 3 grplid WGrpa·˙Y+˙b·˙ZV0˙+˙a·˙Y+˙b·˙Z=a·˙Y+˙b·˙Z
75 69 73 74 syl2anc φ0˙+˙a·˙Y+˙b·˙Z=a·˙Y+˙b·˙Z
76 lmodabl WLModWAbel
77 27 76 syl φWAbel
78 1 14 13 15 lmodvscl WLModdBXVd·˙XV
79 27 22 7 78 syl3anc φd·˙XV
80 1 14 13 15 lmodvscl WLModeBXVe·˙XV
81 27 23 7 80 syl3anc φe·˙XV
82 1 14 13 15 lmodvscl WLModdBYVd·˙YV
83 27 22 28 82 syl3anc φd·˙YV
84 1 14 13 15 lmodvscl WLModeBZVe·˙ZV
85 27 23 31 84 syl3anc φe·˙ZV
86 1 12 2 ablsub4 WAbeld·˙XVe·˙XVd·˙YVe·˙ZVd·˙X+˙e·˙X-˙d·˙Y+˙e·˙Z=d·˙X-˙d·˙Y+˙e·˙X-˙e·˙Z
87 77 79 81 83 85 86 syl122anc φd·˙X+˙e·˙X-˙d·˙Y+˙e·˙Z=d·˙X-˙d·˙Y+˙e·˙X-˙e·˙Z
88 1 12 14 13 15 16 lmodvsdir WLModdBeBXVd˙e·˙X=d·˙X+˙e·˙X
89 27 22 23 7 88 syl13anc φd˙e·˙X=d·˙X+˙e·˙X
90 89 oveq1d φd˙e·˙X-˙d·˙Y+˙e·˙Z=d·˙X+˙e·˙X-˙d·˙Y+˙e·˙Z
91 1 13 14 15 2 27 22 7 28 lmodsubdi φd·˙X-˙Y=d·˙X-˙d·˙Y
92 1 13 14 15 2 27 23 7 31 lmodsubdi φe·˙X-˙Z=e·˙X-˙e·˙Z
93 91 92 oveq12d φd·˙X-˙Y+˙e·˙X-˙Z=d·˙X-˙d·˙Y+˙e·˙X-˙e·˙Z
94 25 93 eqtrd φj=d·˙X-˙d·˙Y+˙e·˙X-˙e·˙Z
95 87 90 94 3eqtr4rd φj=d˙e·˙X-˙d·˙Y+˙e·˙Z
96 1 14 13 15 lmodvscl WLModd˙eBXVd˙e·˙XV
97 27 64 7 96 syl3anc φd˙e·˙XV
98 1 12 lmodvacl WLModd·˙YVe·˙ZVd·˙Y+˙e·˙ZV
99 27 83 85 98 syl3anc φd·˙Y+˙e·˙ZV
100 1 12 58 2 grpsubval d˙e·˙XVd·˙Y+˙e·˙ZVd˙e·˙X-˙d·˙Y+˙e·˙Z=d˙e·˙X+˙invgWd·˙Y+˙e·˙Z
101 97 99 100 syl2anc φd˙e·˙X-˙d·˙Y+˙e·˙Z=d˙e·˙X+˙invgWd·˙Y+˙e·˙Z
102 95 24 101 3eqtr3d φa·˙Y+˙b·˙Z=d˙e·˙X+˙invgWd·˙Y+˙e·˙Z
103 67 75 102 3eqtrd φQ·˙X+˙a·˙Y+˙b·˙Z=d˙e·˙X+˙invgWd·˙Y+˙e·˙Z
104 1 12 14 15 13 54 6 55 7 8 56 60 62 64 103 lvecindp φQ=d˙ea·˙Y+˙b·˙Z=invgWd·˙Y+˙e·˙Z
105 104 simpld φQ=d˙e
106 105 fveq2d φIQ=Id˙e
107 15 19 grpinvcl RGrpdBIdB
108 41 22 107 syl2anc φIdB
109 15 19 grpinvcl RGrpeBIeB
110 41 23 109 syl2anc φIeB
111 104 simprd φa·˙Y+˙b·˙Z=invgWd·˙Y+˙e·˙Z
112 1 12 13 58 14 15 19 27 22 23 28 31 lmodnegadd φinvgWd·˙Y+˙e·˙Z=Id·˙Y+˙Ie·˙Z
113 111 112 eqtrd φa·˙Y+˙b·˙Z=Id·˙Y+˙Ie·˙Z
114 1 12 14 15 13 3 5 6 10 11 20 21 108 110 9 113 lvecindp2 φa=Idb=Ie
115 oveq12 a=Idb=Iea˙b=Id˙Ie
116 114 115 syl φa˙b=Id˙Ie
117 53 106 116 3eqtr4rd φa˙b=IQ
118 18 19 grpinvid RGrpIQ=Q
119 41 118 syl φIQ=Q
120 117 119 eqtrd φa˙b=Q
121 15 16 18 19 grpinvid1 RGrpaBbBIa=ba˙b=Q
122 41 20 21 121 syl3anc φIa=ba˙b=Q
123 120 122 mpbird φIa=b
124 49 123 eqtrd φI1RRa=b
125 124 oveq1d φI1RRa·˙Z=b·˙Z
126 48 125 eqtr3d φI1R·˙a·˙Z=b·˙Z
127 126 oveq2d φa·˙Y+˙I1R·˙a·˙Z=a·˙Y+˙b·˙Z
128 24 127 eqtr4d φj=a·˙Y+˙I1R·˙a·˙Z
129 36 37 128 3eqtr4rd φj=a·˙Y-˙Z