Metamath Proof Explorer


Theorem bcthlem4

Description: Lemma for bcth . Given any open ball ( C ( ballD ) R ) as starting point (and in particular, a ball in int ( U. ran M ) ), the limit point x of the centers of the induced sequence of balls g is outside U. ran M . Note that a set A has empty interior iff every nonempty open set U contains points outside A , i.e. ( U \ A ) =/= (/) . (Contributed by Mario Carneiro, 7-Jan-2014)

Ref Expression
Hypotheses bcth.2 J=MetOpenD
bcthlem.4 φDCMetX
bcthlem.5 F=k,zX×+xr|xXr+r<1kclsJxballDrballDzMk
bcthlem.6 φM:ClsdJ
bcthlem.7 φR+
bcthlem.8 φCX
bcthlem.9 φg:X×+
bcthlem.10 φg1=CR
bcthlem.11 φkgk+1kFgk
Assertion bcthlem4 φCballDRranM

Proof

Step Hyp Ref Expression
1 bcth.2 J=MetOpenD
2 bcthlem.4 φDCMetX
3 bcthlem.5 F=k,zX×+xr|xXr+r<1kclsJxballDrballDzMk
4 bcthlem.6 φM:ClsdJ
5 bcthlem.7 φR+
6 bcthlem.8 φCX
7 bcthlem.9 φg:X×+
8 bcthlem.10 φg1=CR
9 bcthlem.11 φkgk+1kFgk
10 cmetmet DCMetXDMetX
11 2 10 syl φDMetX
12 metxmet DMetXD∞MetX
13 11 12 syl φD∞MetX
14 1 2 3 4 5 6 7 8 9 bcthlem2 φnballDgn+1ballDgn
15 elrp r+r0<r
16 nnrecl r0<rm1m<r
17 15 16 sylbi r+m1m<r
18 17 adantl φr+m1m<r
19 peano2nn mm+1
20 19 adantl φr+mm+1
21 fvoveq1 k=mgk+1=gm+1
22 id k=mk=m
23 fveq2 k=mgk=gm
24 22 23 oveq12d k=mkFgk=mFgm
25 21 24 eleq12d k=mgk+1kFgkgm+1mFgm
26 25 rspccva kgk+1kFgkmgm+1mFgm
27 9 26 sylan φmgm+1mFgm
28 7 ffvelcdmda φmgmX×+
29 1 2 3 bcthlem1 φmgmX×+gm+1mFgmgm+1X×+2ndgm+1<1mclsJballDgm+1ballDgmMm
30 29 expr φmgmX×+gm+1mFgmgm+1X×+2ndgm+1<1mclsJballDgm+1ballDgmMm
31 28 30 mpd φmgm+1mFgmgm+1X×+2ndgm+1<1mclsJballDgm+1ballDgmMm
32 27 31 mpbid φmgm+1X×+2ndgm+1<1mclsJballDgm+1ballDgmMm
33 32 simp2d φm2ndgm+1<1m
34 33 adantlr φr+m2ndgm+1<1m
35 32 simp1d φmgm+1X×+
36 xp2nd gm+1X×+2ndgm+1+
37 35 36 syl φm2ndgm+1+
38 37 rpred φm2ndgm+1
39 38 adantlr φr+m2ndgm+1
40 nnrecre m1m
41 40 adantl φr+m1m
42 rpre r+r
43 42 ad2antlr φr+mr
44 lttr 2ndgm+11mr2ndgm+1<1m1m<r2ndgm+1<r
45 39 41 43 44 syl3anc φr+m2ndgm+1<1m1m<r2ndgm+1<r
46 34 45 mpand φr+m1m<r2ndgm+1<r
47 2fveq3 n=m+12ndgn=2ndgm+1
48 47 breq1d n=m+12ndgn<r2ndgm+1<r
49 48 rspcev m+12ndgm+1<rn2ndgn<r
50 20 46 49 syl6an φr+m1m<rn2ndgn<r
51 50 rexlimdva φr+m1m<rn2ndgn<r
52 18 51 mpd φr+n2ndgn<r
53 52 ralrimiva φr+n2ndgn<r
54 13 7 14 53 caubl φ1stgCauD
55 1 cmetcau DCMetX1stgCauD1stgdomtJ
56 2 54 55 syl2anc φ1stgdomtJ
57 fo1st 1st:VontoV
58 fofun 1st:VontoVFun1st
59 57 58 ax-mp Fun1st
60 vex gV
61 cofunexg Fun1stgV1stgV
62 59 60 61 mp2an 1stgV
63 62 eldm 1stgdomtJx1stgtJx
64 56 63 sylib φx1stgtJx
65 1nn 1
66 1 2 3 4 5 6 7 8 9 bcthlem3 φ1stgtJx1xballDg1
67 65 66 mp3an3 φ1stgtJxxballDg1
68 8 fveq2d φballDg1=ballDCR
69 df-ov CballDR=ballDCR
70 68 69 eqtr4di φballDg1=CballDR
71 70 adantr φ1stgtJxballDg1=CballDR
72 67 71 eleqtrd φ1stgtJxxCballDR
73 1 mopntop D∞MetXJTop
74 13 73 syl φJTop
75 74 adantr φmJTop
76 13 adantr φmD∞MetX
77 xp1st gm+1X×+1stgm+1X
78 35 77 syl φm1stgm+1X
79 37 rpxrd φm2ndgm+1*
80 blssm D∞MetX1stgm+1X2ndgm+1*1stgm+1ballD2ndgm+1X
81 76 78 79 80 syl3anc φm1stgm+1ballD2ndgm+1X
82 df-ov 1stgm+1ballD2ndgm+1=ballD1stgm+12ndgm+1
83 1st2nd2 gm+1X×+gm+1=1stgm+12ndgm+1
84 35 83 syl φmgm+1=1stgm+12ndgm+1
85 84 fveq2d φmballDgm+1=ballD1stgm+12ndgm+1
86 82 85 eqtr4id φm1stgm+1ballD2ndgm+1=ballDgm+1
87 1 mopnuni D∞MetXX=J
88 13 87 syl φX=J
89 88 adantr φmX=J
90 81 86 89 3sstr3d φmballDgm+1J
91 eqid J=J
92 91 sscls JTopballDgm+1JballDgm+1clsJballDgm+1
93 75 90 92 syl2anc φmballDgm+1clsJballDgm+1
94 32 simp3d φmclsJballDgm+1ballDgmMm
95 93 94 sstrd φmballDgm+1ballDgmMm
96 95 3adant2 φ1stgtJxmballDgm+1ballDgmMm
97 1 2 3 4 5 6 7 8 9 bcthlem3 φ1stgtJxm+1xballDgm+1
98 19 97 syl3an3 φ1stgtJxmxballDgm+1
99 96 98 sseldd φ1stgtJxmxballDgmMm
100 99 eldifbd φ1stgtJxm¬xMm
101 100 3expa φ1stgtJxm¬xMm
102 101 ralrimiva φ1stgtJxm¬xMm
103 eluni2 xranMyranMxy
104 4 ffnd φMFn
105 eleq2 y=MmxyxMm
106 105 rexrn MFnyranMxymxMm
107 104 106 syl φyranMxymxMm
108 103 107 bitrid φxranMmxMm
109 108 notbid φ¬xranM¬mxMm
110 ralnex m¬xMm¬mxMm
111 109 110 bitr4di φ¬xranMm¬xMm
112 111 biimpar φm¬xMm¬xranM
113 102 112 syldan φ1stgtJx¬xranM
114 72 113 eldifd φ1stgtJxxCballDRranM
115 114 ne0d φ1stgtJxCballDRranM
116 64 115 exlimddv φCballDRranM