| Step |
Hyp |
Ref |
Expression |
| 1 |
|
binomcxp.a |
|
| 2 |
|
binomcxp.b |
|
| 3 |
|
binomcxp.lt |
|
| 4 |
|
binomcxp.c |
|
| 5 |
|
binomcxplem.f |
|
| 6 |
|
binomcxplem.s |
|
| 7 |
|
binomcxplem.r |
|
| 8 |
|
binomcxplem.e |
|
| 9 |
|
binomcxplem.d |
|
| 10 |
4
|
adantr |
|
| 11 |
|
simpr |
|
| 12 |
10 11
|
bcccl |
|
| 13 |
12 5
|
fmptd |
|
| 14 |
13
|
adantr |
|
| 15 |
9
|
eleq2i |
|
| 16 |
|
absf |
|
| 17 |
|
ffn |
|
| 18 |
|
elpreima |
|
| 19 |
16 17 18
|
mp2b |
|
| 20 |
15 19
|
bitri |
|
| 21 |
20
|
simplbi |
|
| 22 |
21
|
adantl |
|
| 23 |
20
|
simprbi |
|
| 24 |
|
0re |
|
| 25 |
|
ssrab2 |
|
| 26 |
|
ressxr |
|
| 27 |
25 26
|
sstri |
|
| 28 |
|
supxrcl |
|
| 29 |
27 28
|
ax-mp |
|
| 30 |
7 29
|
eqeltri |
|
| 31 |
|
elico2 |
|
| 32 |
24 30 31
|
mp2an |
|
| 33 |
32
|
simp3bi |
|
| 34 |
23 33
|
syl |
|
| 35 |
34
|
adantl |
|
| 36 |
6 14 7 22 35
|
radcnvlt2 |
|
| 37 |
8
|
a1i |
|
| 38 |
|
simplr |
|
| 39 |
38
|
oveq1d |
|
| 40 |
39
|
oveq2d |
|
| 41 |
40
|
mpteq2dva |
|
| 42 |
|
simpr |
|
| 43 |
|
nnex |
|
| 44 |
43
|
mptex |
|
| 45 |
44
|
a1i |
|
| 46 |
37 41 42 45
|
fvmptd |
|
| 47 |
21 46
|
sylan2 |
|
| 48 |
47
|
seqeq3d |
|
| 49 |
|
eqid |
|
| 50 |
6 7 49 14 22 35
|
dvradcnv2 |
|
| 51 |
48 50
|
eqeltrd |
|
| 52 |
36 51
|
jca |
|