Metamath Proof Explorer


Theorem binomcxplemcvg

Description: Lemma for binomcxp . The sum in binomcxplemnn0 and its derivative (see the next theorem, binomcxplemdvsum ) converge, as long as their base J is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)

Ref Expression
Hypotheses binomcxp.a φA+
binomcxp.b φB
binomcxp.lt φB<A
binomcxp.c φC
binomcxplem.f F=j0CC𝑐j
binomcxplem.s S=bk0Fkbk
binomcxplem.r R=supr|seq0+Srdom*<
binomcxplem.e E=bkkFkbk1
binomcxplem.d D=abs-10R
Assertion binomcxplemcvg φJDseq0+SJdomseq1+EJdom

Proof

Step Hyp Ref Expression
1 binomcxp.a φA+
2 binomcxp.b φB
3 binomcxp.lt φB<A
4 binomcxp.c φC
5 binomcxplem.f F=j0CC𝑐j
6 binomcxplem.s S=bk0Fkbk
7 binomcxplem.r R=supr|seq0+Srdom*<
8 binomcxplem.e E=bkkFkbk1
9 binomcxplem.d D=abs-10R
10 4 adantr φj0C
11 simpr φj0j0
12 10 11 bcccl φj0CC𝑐j
13 12 5 fmptd φF:0
14 13 adantr φJDF:0
15 9 eleq2i JDJabs-10R
16 absf abs:
17 ffn abs:absFn
18 elpreima absFnJabs-10RJJ0R
19 16 17 18 mp2b Jabs-10RJJ0R
20 15 19 bitri JDJJ0R
21 20 simplbi JDJ
22 21 adantl φJDJ
23 20 simprbi JDJ0R
24 0re 0
25 ssrab2 r|seq0+Srdom
26 ressxr *
27 25 26 sstri r|seq0+Srdom*
28 supxrcl r|seq0+Srdom*supr|seq0+Srdom*<*
29 27 28 ax-mp supr|seq0+Srdom*<*
30 7 29 eqeltri R*
31 elico2 0R*J0RJ0JJ<R
32 24 30 31 mp2an J0RJ0JJ<R
33 32 simp3bi J0RJ<R
34 23 33 syl JDJ<R
35 34 adantl φJDJ<R
36 6 14 7 22 35 radcnvlt2 φJDseq0+SJdom
37 8 a1i φJE=bkkFkbk1
38 simplr φJb=Jkb=J
39 38 oveq1d φJb=Jkbk1=Jk1
40 39 oveq2d φJb=JkkFkbk1=kFkJk1
41 40 mpteq2dva φJb=JkkFkbk1=kkFkJk1
42 simpr φJJ
43 nnex V
44 43 mptex kkFkJk1V
45 44 a1i φJkkFkJk1V
46 37 41 42 45 fvmptd φJEJ=kkFkJk1
47 21 46 sylan2 φJDEJ=kkFkJk1
48 47 seqeq3d φJDseq1+EJ=seq1+kkFkJk1
49 eqid kkFkJk1=kkFkJk1
50 6 7 49 14 22 35 dvradcnv2 φJDseq1+kkFkJk1dom
51 48 50 eqeltrd φJDseq1+EJdom
52 36 51 jca φJDseq0+SJdomseq1+EJdom