Description: Lemma for binomcxp . The sum in binomcxplemnn0 and its derivative (see the next theorem, binomcxplemdvsum ) converge, as long as their base J is within the disk of convergence. Part of remark "This convergence allows us to apply term-by-term differentiation..." in the Wikibooks proof. (Contributed by Steve Rodriguez, 22-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | binomcxp.a | |
|
binomcxp.b | |
||
binomcxp.lt | |
||
binomcxp.c | |
||
binomcxplem.f | |
||
binomcxplem.s | |
||
binomcxplem.r | |
||
binomcxplem.e | |
||
binomcxplem.d | |
||
Assertion | binomcxplemcvg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | binomcxp.a | |
|
2 | binomcxp.b | |
|
3 | binomcxp.lt | |
|
4 | binomcxp.c | |
|
5 | binomcxplem.f | |
|
6 | binomcxplem.s | |
|
7 | binomcxplem.r | |
|
8 | binomcxplem.e | |
|
9 | binomcxplem.d | |
|
10 | 4 | adantr | |
11 | simpr | |
|
12 | 10 11 | bcccl | |
13 | 12 5 | fmptd | |
14 | 13 | adantr | |
15 | 9 | eleq2i | |
16 | absf | |
|
17 | ffn | |
|
18 | elpreima | |
|
19 | 16 17 18 | mp2b | |
20 | 15 19 | bitri | |
21 | 20 | simplbi | |
22 | 21 | adantl | |
23 | 20 | simprbi | |
24 | 0re | |
|
25 | ssrab2 | |
|
26 | ressxr | |
|
27 | 25 26 | sstri | |
28 | supxrcl | |
|
29 | 27 28 | ax-mp | |
30 | 7 29 | eqeltri | |
31 | elico2 | |
|
32 | 24 30 31 | mp2an | |
33 | 32 | simp3bi | |
34 | 23 33 | syl | |
35 | 34 | adantl | |
36 | 6 14 7 22 35 | radcnvlt2 | |
37 | 8 | a1i | |
38 | simplr | |
|
39 | 38 | oveq1d | |
40 | 39 | oveq2d | |
41 | 40 | mpteq2dva | |
42 | simpr | |
|
43 | nnex | |
|
44 | 43 | mptex | |
45 | 44 | a1i | |
46 | 37 41 42 45 | fvmptd | |
47 | 21 46 | sylan2 | |
48 | 47 | seqeq3d | |
49 | eqid | |
|
50 | 6 7 49 14 22 35 | dvradcnv2 | |
51 | 48 50 | eqeltrd | |
52 | 36 51 | jca | |