| Step |
Hyp |
Ref |
Expression |
| 1 |
|
breprexp.n |
|
| 2 |
|
breprexp.s |
|
| 3 |
|
breprexp.z |
|
| 4 |
|
breprexpnat.a |
|
| 5 |
|
breprexpnat.p |
|
| 6 |
|
breprexpnat.r |
|
| 7 |
|
fvex |
|
| 8 |
7
|
fconst |
|
| 9 |
|
nnex |
|
| 10 |
|
indf |
|
| 11 |
9 4 10
|
sylancr |
|
| 12 |
|
0cn |
|
| 13 |
|
ax-1cn |
|
| 14 |
|
prssi |
|
| 15 |
12 13 14
|
mp2an |
|
| 16 |
|
fss |
|
| 17 |
11 15 16
|
sylancl |
|
| 18 |
|
cnex |
|
| 19 |
18 9
|
elmap |
|
| 20 |
17 19
|
sylibr |
|
| 21 |
7
|
snss |
|
| 22 |
20 21
|
sylib |
|
| 23 |
|
fss |
|
| 24 |
8 22 23
|
sylancr |
|
| 25 |
1 2 3 24
|
breprexp |
|
| 26 |
7
|
fvconst2 |
|
| 27 |
26
|
ad2antlr |
|
| 28 |
27
|
fveq1d |
|
| 29 |
28
|
oveq1d |
|
| 30 |
29
|
sumeq2dv |
|
| 31 |
9
|
a1i |
|
| 32 |
|
fzfi |
|
| 33 |
32
|
a1i |
|
| 34 |
|
fz1ssnn |
|
| 35 |
34
|
a1i |
|
| 36 |
4
|
adantr |
|
| 37 |
3
|
ad2antrr |
|
| 38 |
|
nnssnn0 |
|
| 39 |
34 38
|
sstri |
|
| 40 |
|
simpr |
|
| 41 |
39 40
|
sselid |
|
| 42 |
37 41
|
expcld |
|
| 43 |
31 33 35 36 42
|
indsumin |
|
| 44 |
|
incom |
|
| 45 |
44
|
a1i |
|
| 46 |
45
|
sumeq1d |
|
| 47 |
30 43 46
|
3eqtrd |
|
| 48 |
47
|
prodeq2dv |
|
| 49 |
|
fzofi |
|
| 50 |
49
|
a1i |
|
| 51 |
|
inss2 |
|
| 52 |
|
ssfi |
|
| 53 |
32 51 52
|
mp2an |
|
| 54 |
53
|
a1i |
|
| 55 |
3
|
adantr |
|
| 56 |
51 39
|
sstri |
|
| 57 |
|
simpr |
|
| 58 |
56 57
|
sselid |
|
| 59 |
55 58
|
expcld |
|
| 60 |
54 59
|
fsumcl |
|
| 61 |
|
fprodconst |
|
| 62 |
50 60 61
|
syl2anc |
|
| 63 |
|
hashfzo0 |
|
| 64 |
2 63
|
syl |
|
| 65 |
64
|
oveq2d |
|
| 66 |
48 62 65
|
3eqtrd |
|
| 67 |
34
|
a1i |
|
| 68 |
|
fzssz |
|
| 69 |
|
simpr |
|
| 70 |
68 69
|
sselid |
|
| 71 |
2
|
adantr |
|
| 72 |
32
|
a1i |
|
| 73 |
67 70 71 72
|
reprfi |
|
| 74 |
3
|
adantr |
|
| 75 |
|
fz0ssnn0 |
|
| 76 |
75 69
|
sselid |
|
| 77 |
74 76
|
expcld |
|
| 78 |
49
|
a1i |
|
| 79 |
11
|
ad3antrrr |
|
| 80 |
34
|
a1i |
|
| 81 |
70
|
adantr |
|
| 82 |
71
|
adantr |
|
| 83 |
|
simpr |
|
| 84 |
80 81 82 83
|
reprf |
|
| 85 |
84
|
ffvelcdmda |
|
| 86 |
34 85
|
sselid |
|
| 87 |
79 86
|
ffvelcdmd |
|
| 88 |
15 87
|
sselid |
|
| 89 |
78 88
|
fprodcl |
|
| 90 |
73 77 89
|
fsummulc1 |
|
| 91 |
4
|
adantr |
|
| 92 |
91 70 71 72 67
|
hashreprin |
|
| 93 |
92
|
oveq1d |
|
| 94 |
26
|
fveq1d |
|
| 95 |
94
|
adantl |
|
| 96 |
95
|
prodeq2dv |
|
| 97 |
96
|
adantr |
|
| 98 |
97
|
oveq1d |
|
| 99 |
98
|
sumeq2dv |
|
| 100 |
90 93 99
|
3eqtr4rd |
|
| 101 |
100
|
sumeq2dv |
|
| 102 |
25 66 101
|
3eqtr3d |
|
| 103 |
5
|
oveq1i |
|
| 104 |
6
|
oveq1i |
|
| 105 |
104
|
a1i |
|
| 106 |
105
|
sumeq2i |
|
| 107 |
102 103 106
|
3eqtr4g |
|