Metamath Proof Explorer


Theorem breprexpnat

Description: Express the S th power of the finite series in terms of the number of representations of integers m as sums of S terms of elements of A , bounded by N . Proposition of Nathanson p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021)

Ref Expression
Hypotheses breprexp.n φN0
breprexp.s φS0
breprexp.z φZ
breprexpnat.a φA
breprexpnat.p P=bA1NZb
breprexpnat.r R=A1NreprSm
Assertion breprexpnat φPS=m=0S NRZm

Proof

Step Hyp Ref Expression
1 breprexp.n φN0
2 breprexp.s φS0
3 breprexp.z φZ
4 breprexpnat.a φA
5 breprexpnat.p P=bA1NZb
6 breprexpnat.r R=A1NreprSm
7 fvex 𝟙AV
8 7 fconst 0..^S×𝟙A:0..^S𝟙A
9 nnex V
10 indf VA𝟙A:01
11 9 4 10 sylancr φ𝟙A:01
12 0cn 0
13 ax-1cn 1
14 prssi 0101
15 12 13 14 mp2an 01
16 fss 𝟙A:0101𝟙A:
17 11 15 16 sylancl φ𝟙A:
18 cnex V
19 18 9 elmap 𝟙A𝟙A:
20 17 19 sylibr φ𝟙A
21 7 snss 𝟙A𝟙A
22 20 21 sylib φ𝟙A
23 fss 0..^S×𝟙A:0..^S𝟙A𝟙A0..^S×𝟙A:0..^S
24 8 22 23 sylancr φ0..^S×𝟙A:0..^S
25 1 2 3 24 breprexp φa0..^Sb=1N0..^S×𝟙AabZb=m=0S Nc1NreprSma0..^S0..^S×𝟙AacaZm
26 7 fvconst2 a0..^S0..^S×𝟙Aa=𝟙A
27 26 ad2antlr φa0..^Sb1N0..^S×𝟙Aa=𝟙A
28 27 fveq1d φa0..^Sb1N0..^S×𝟙Aab=𝟙Ab
29 28 oveq1d φa0..^Sb1N0..^S×𝟙AabZb=𝟙AbZb
30 29 sumeq2dv φa0..^Sb=1N0..^S×𝟙AabZb=b=1N𝟙AbZb
31 9 a1i φa0..^SV
32 fzfi 1NFin
33 32 a1i φa0..^S1NFin
34 fz1ssnn 1N
35 34 a1i φa0..^S1N
36 4 adantr φa0..^SA
37 3 ad2antrr φa0..^Sb1NZ
38 nnssnn0 0
39 34 38 sstri 1N0
40 simpr φa0..^Sb1Nb1N
41 39 40 sselid φa0..^Sb1Nb0
42 37 41 expcld φa0..^Sb1NZb
43 31 33 35 36 42 indsumin φa0..^Sb=1N𝟙AbZb=b1NAZb
44 incom 1NA=A1N
45 44 a1i φa0..^S1NA=A1N
46 45 sumeq1d φa0..^Sb1NAZb=bA1NZb
47 30 43 46 3eqtrd φa0..^Sb=1N0..^S×𝟙AabZb=bA1NZb
48 47 prodeq2dv φa0..^Sb=1N0..^S×𝟙AabZb=a0..^SbA1NZb
49 fzofi 0..^SFin
50 49 a1i φ0..^SFin
51 inss2 A1N1N
52 ssfi 1NFinA1N1NA1NFin
53 32 51 52 mp2an A1NFin
54 53 a1i φA1NFin
55 3 adantr φbA1NZ
56 51 39 sstri A1N0
57 simpr φbA1NbA1N
58 56 57 sselid φbA1Nb0
59 55 58 expcld φbA1NZb
60 54 59 fsumcl φbA1NZb
61 fprodconst 0..^SFinbA1NZba0..^SbA1NZb=bA1NZb0..^S
62 50 60 61 syl2anc φa0..^SbA1NZb=bA1NZb0..^S
63 hashfzo0 S00..^S=S
64 2 63 syl φ0..^S=S
65 64 oveq2d φbA1NZb0..^S=bA1NZbS
66 48 62 65 3eqtrd φa0..^Sb=1N0..^S×𝟙AabZb=bA1NZbS
67 34 a1i φm0S N1N
68 fzssz 0S N
69 simpr φm0S Nm0S N
70 68 69 sselid φm0S Nm
71 2 adantr φm0S NS0
72 32 a1i φm0S N1NFin
73 67 70 71 72 reprfi φm0S N1NreprSmFin
74 3 adantr φm0S NZ
75 fz0ssnn0 0S N0
76 75 69 sselid φm0S Nm0
77 74 76 expcld φm0S NZm
78 49 a1i φm0S Nc1NreprSm0..^SFin
79 11 ad3antrrr φm0S Nc1NreprSma0..^S𝟙A:01
80 34 a1i φm0S Nc1NreprSm1N
81 70 adantr φm0S Nc1NreprSmm
82 71 adantr φm0S Nc1NreprSmS0
83 simpr φm0S Nc1NreprSmc1NreprSm
84 80 81 82 83 reprf φm0S Nc1NreprSmc:0..^S1N
85 84 ffvelcdmda φm0S Nc1NreprSma0..^Sca1N
86 34 85 sselid φm0S Nc1NreprSma0..^Sca
87 79 86 ffvelcdmd φm0S Nc1NreprSma0..^S𝟙Aca01
88 15 87 sselid φm0S Nc1NreprSma0..^S𝟙Aca
89 78 88 fprodcl φm0S Nc1NreprSma0..^S𝟙Aca
90 73 77 89 fsummulc1 φm0S Nc1NreprSma0..^S𝟙AcaZm=c1NreprSma0..^S𝟙AcaZm
91 4 adantr φm0S NA
92 91 70 71 72 67 hashreprin φm0S NA1NreprSm=c1NreprSma0..^S𝟙Aca
93 92 oveq1d φm0S NA1NreprSmZm=c1NreprSma0..^S𝟙AcaZm
94 26 fveq1d a0..^S0..^S×𝟙Aaca=𝟙Aca
95 94 adantl φm0S Na0..^S0..^S×𝟙Aaca=𝟙Aca
96 95 prodeq2dv φm0S Na0..^S0..^S×𝟙Aaca=a0..^S𝟙Aca
97 96 adantr φm0S Nc1NreprSma0..^S0..^S×𝟙Aaca=a0..^S𝟙Aca
98 97 oveq1d φm0S Nc1NreprSma0..^S0..^S×𝟙AacaZm=a0..^S𝟙AcaZm
99 98 sumeq2dv φm0S Nc1NreprSma0..^S0..^S×𝟙AacaZm=c1NreprSma0..^S𝟙AcaZm
100 90 93 99 3eqtr4rd φm0S Nc1NreprSma0..^S0..^S×𝟙AacaZm=A1NreprSmZm
101 100 sumeq2dv φm=0S Nc1NreprSma0..^S0..^S×𝟙AacaZm=m=0S NA1NreprSmZm
102 25 66 101 3eqtr3d φbA1NZbS=m=0S NA1NreprSmZm
103 5 oveq1i PS=bA1NZbS
104 6 oveq1i RZm=A1NreprSmZm
105 104 a1i m0S NRZm=A1NreprSmZm
106 105 sumeq2i m=0S NRZm=m=0S NA1NreprSmZm
107 102 103 106 3eqtr4g φPS=m=0S NRZm