Description: Express the second Chebyshev function directly as a sum over the primes less than A (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Assertion | chpval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpval | |
|
2 | fveq2 | |
|
3 | id | |
|
4 | elfznn | |
|
5 | 4 | adantl | |
6 | vmacl | |
|
7 | 5 6 | syl | |
8 | 7 | recnd | |
9 | simprr | |
|
10 | 2 3 8 9 | fsumvma2 | |
11 | simpr | |
|
12 | 11 | elin2d | |
13 | elfznn | |
|
14 | vmappw | |
|
15 | 12 13 14 | syl2an | |
16 | 15 | sumeq2dv | |
17 | fzfid | |
|
18 | prmuz2 | |
|
19 | eluzelre | |
|
20 | eluz2gt1 | |
|
21 | 19 20 | rplogcld | |
22 | 12 18 21 | 3syl | |
23 | 22 | rpcnd | |
24 | fsumconst | |
|
25 | 17 23 24 | syl2anc | |
26 | ppisval | |
|
27 | inss1 | |
|
28 | 26 27 | eqsstrdi | |
29 | 28 | sselda | |
30 | elfzuz2 | |
|
31 | 29 30 | syl | |
32 | simpl | |
|
33 | 0red | |
|
34 | 2re | |
|
35 | 34 | a1i | |
36 | 2pos | |
|
37 | 36 | a1i | |
38 | eluzle | |
|
39 | 2z | |
|
40 | flge | |
|
41 | 39 40 | mpan2 | |
42 | 38 41 | imbitrrid | |
43 | 42 | imp | |
44 | 33 35 32 37 43 | ltletrd | |
45 | 32 44 | elrpd | |
46 | 31 45 | syldan | |
47 | 46 | relogcld | |
48 | 47 22 | rerpdivcld | |
49 | 1red | |
|
50 | 1lt2 | |
|
51 | 50 | a1i | |
52 | 49 35 32 51 43 | ltletrd | |
53 | 31 52 | syldan | |
54 | rplogcl | |
|
55 | 53 54 | syldan | |
56 | 55 22 | rpdivcld | |
57 | 56 | rpge0d | |
58 | flge0nn0 | |
|
59 | 48 57 58 | syl2anc | |
60 | hashfz1 | |
|
61 | 59 60 | syl | |
62 | 61 | oveq1d | |
63 | 59 | nn0cnd | |
64 | 63 23 | mulcomd | |
65 | 25 62 64 | 3eqtrd | |
66 | 16 65 | eqtrd | |
67 | 66 | sumeq2dv | |
68 | 1 10 67 | 3eqtrd | |