Metamath Proof Explorer


Theorem chpval2

Description: Express the second Chebyshev function directly as a sum over the primes less than A (instead of indirectly through the von Mangoldt function). (Contributed by Mario Carneiro, 8-Apr-2016)

Ref Expression
Assertion chpval2 AψA=p0AlogplogAlogp

Proof

Step Hyp Ref Expression
1 chpval AψA=n=1AΛn
2 fveq2 n=pkΛn=Λpk
3 id AA
4 elfznn n1An
5 4 adantl An1An
6 vmacl nΛn
7 5 6 syl An1AΛn
8 7 recnd An1AΛn
9 simprr An1AΛn=0Λn=0
10 2 3 8 9 fsumvma2 An=1AΛn=p0Ak=1logAlogpΛpk
11 simpr Ap0Ap0A
12 11 elin2d Ap0Ap
13 elfznn k1logAlogpk
14 vmappw pkΛpk=logp
15 12 13 14 syl2an Ap0Ak1logAlogpΛpk=logp
16 15 sumeq2dv Ap0Ak=1logAlogpΛpk=k=1logAlogplogp
17 fzfid Ap0A1logAlogpFin
18 prmuz2 pp2
19 eluzelre p2p
20 eluz2gt1 p21<p
21 19 20 rplogcld p2logp+
22 12 18 21 3syl Ap0Alogp+
23 22 rpcnd Ap0Alogp
24 fsumconst 1logAlogpFinlogpk=1logAlogplogp=1logAlogplogp
25 17 23 24 syl2anc Ap0Ak=1logAlogplogp=1logAlogplogp
26 ppisval A0A=2A
27 inss1 2A2A
28 26 27 eqsstrdi A0A2A
29 28 sselda Ap0Ap2A
30 elfzuz2 p2AA2
31 29 30 syl Ap0AA2
32 simpl AA2A
33 0red AA20
34 2re 2
35 34 a1i AA22
36 2pos 0<2
37 36 a1i AA20<2
38 eluzle A22A
39 2z 2
40 flge A22A2A
41 39 40 mpan2 A2A2A
42 38 41 imbitrrid AA22A
43 42 imp AA22A
44 33 35 32 37 43 ltletrd AA20<A
45 32 44 elrpd AA2A+
46 31 45 syldan Ap0AA+
47 46 relogcld Ap0AlogA
48 47 22 rerpdivcld Ap0AlogAlogp
49 1red AA21
50 1lt2 1<2
51 50 a1i AA21<2
52 49 35 32 51 43 ltletrd AA21<A
53 31 52 syldan Ap0A1<A
54 rplogcl A1<AlogA+
55 53 54 syldan Ap0AlogA+
56 55 22 rpdivcld Ap0AlogAlogp+
57 56 rpge0d Ap0A0logAlogp
58 flge0nn0 logAlogp0logAlogplogAlogp0
59 48 57 58 syl2anc Ap0AlogAlogp0
60 hashfz1 logAlogp01logAlogp=logAlogp
61 59 60 syl Ap0A1logAlogp=logAlogp
62 61 oveq1d Ap0A1logAlogplogp=logAlogplogp
63 59 nn0cnd Ap0AlogAlogp
64 63 23 mulcomd Ap0AlogAlogplogp=logplogAlogp
65 25 62 64 3eqtrd Ap0Ak=1logAlogplogp=logplogAlogp
66 16 65 eqtrd Ap0Ak=1logAlogpΛpk=logplogAlogp
67 66 sumeq2dv Ap0Ak=1logAlogpΛpk=p0AlogplogAlogp
68 1 10 67 3eqtrd AψA=p0AlogplogAlogp