| Step | Hyp | Ref | Expression | 
						
							| 1 |  | chtppilim.1 |  | 
						
							| 2 |  | chtppilim.2 |  | 
						
							| 3 |  | simpr |  | 
						
							| 4 |  | 2re |  | 
						
							| 5 |  | elicopnf |  | 
						
							| 6 | 4 5 | ax-mp |  | 
						
							| 7 | 3 6 | sylib |  | 
						
							| 8 | 7 | simpld |  | 
						
							| 9 |  | 0red |  | 
						
							| 10 | 4 | a1i |  | 
						
							| 11 |  | 2pos |  | 
						
							| 12 | 11 | a1i |  | 
						
							| 13 | 7 | simprd |  | 
						
							| 14 | 9 10 8 12 13 | ltletrd |  | 
						
							| 15 | 8 14 | elrpd |  | 
						
							| 16 | 1 | rpred |  | 
						
							| 17 | 16 | adantr |  | 
						
							| 18 | 15 17 | rpcxpcld |  | 
						
							| 19 |  | ppinncl |  | 
						
							| 20 | 7 19 | syl |  | 
						
							| 21 | 20 | nnrpd |  | 
						
							| 22 | 18 21 | rpdivcld |  | 
						
							| 23 | 22 | ralrimiva |  | 
						
							| 24 |  | 1re |  | 
						
							| 25 |  | difrp |  | 
						
							| 26 | 16 24 25 | sylancl |  | 
						
							| 27 | 2 26 | mpbid |  | 
						
							| 28 |  | ovexd |  | 
						
							| 29 | 24 | a1i |  | 
						
							| 30 |  | 1lt2 |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 | 29 10 8 31 13 | ltletrd |  | 
						
							| 33 | 8 32 | rplogcld |  | 
						
							| 34 | 15 33 | rpdivcld |  | 
						
							| 35 | 34 21 | rpdivcld |  | 
						
							| 36 | 27 | adantr |  | 
						
							| 37 | 36 | rpred |  | 
						
							| 38 | 15 37 | rpcxpcld |  | 
						
							| 39 | 33 38 | rpdivcld |  | 
						
							| 40 |  | eqidd |  | 
						
							| 41 |  | eqidd |  | 
						
							| 42 | 28 35 39 40 41 | offval2 |  | 
						
							| 43 | 34 | rpcnd |  | 
						
							| 44 | 39 | rpcnd |  | 
						
							| 45 | 21 | rpcnne0d |  | 
						
							| 46 |  | div23 |  | 
						
							| 47 | 43 44 45 46 | syl3anc |  | 
						
							| 48 | 33 | rpcnne0d |  | 
						
							| 49 | 38 | rpcnne0d |  | 
						
							| 50 | 8 | recnd |  | 
						
							| 51 |  | dmdcan |  | 
						
							| 52 | 48 49 50 51 | syl3anc |  | 
						
							| 53 | 43 44 | mulcomd |  | 
						
							| 54 | 15 | rpcnne0d |  | 
						
							| 55 |  | ax-1cn |  | 
						
							| 56 | 55 | a1i |  | 
						
							| 57 | 36 | rpcnd |  | 
						
							| 58 |  | cxpsub |  | 
						
							| 59 | 54 56 57 58 | syl3anc |  | 
						
							| 60 | 17 | recnd |  | 
						
							| 61 |  | nncan |  | 
						
							| 62 | 55 60 61 | sylancr |  | 
						
							| 63 | 62 | oveq2d |  | 
						
							| 64 | 59 63 | eqtr3d |  | 
						
							| 65 | 50 | cxp1d |  | 
						
							| 66 | 65 | oveq1d |  | 
						
							| 67 | 64 66 | eqtr3d |  | 
						
							| 68 | 52 53 67 | 3eqtr4d |  | 
						
							| 69 | 68 | oveq1d |  | 
						
							| 70 | 47 69 | eqtr3d |  | 
						
							| 71 | 70 | mpteq2dva |  | 
						
							| 72 | 42 71 | eqtrd |  | 
						
							| 73 |  | chebbnd1 |  | 
						
							| 74 | 15 | ex |  | 
						
							| 75 | 74 | ssrdv |  | 
						
							| 76 |  | cxploglim |  | 
						
							| 77 | 27 76 | syl |  | 
						
							| 78 | 75 77 | rlimres2 |  | 
						
							| 79 |  | o1rlimmul |  | 
						
							| 80 | 73 78 79 | sylancr |  | 
						
							| 81 | 72 80 | eqbrtrrd |  | 
						
							| 82 | 23 27 81 | rlimi |  | 
						
							| 83 | 22 | rpcnd |  | 
						
							| 84 | 83 | subid1d |  | 
						
							| 85 | 84 | fveq2d |  | 
						
							| 86 | 22 | rpred |  | 
						
							| 87 | 22 | rpge0d |  | 
						
							| 88 | 86 87 | absidd |  | 
						
							| 89 | 85 88 | eqtrd |  | 
						
							| 90 | 89 | breq1d |  | 
						
							| 91 | 1 | adantr |  | 
						
							| 92 | 2 | adantr |  | 
						
							| 93 |  | simprl |  | 
						
							| 94 |  | simprr |  | 
						
							| 95 | 91 92 93 94 | chtppilimlem1 |  | 
						
							| 96 | 95 | expr |  | 
						
							| 97 | 90 96 | sylbid |  | 
						
							| 98 | 97 | imim2d |  | 
						
							| 99 | 98 | ralimdva |  | 
						
							| 100 | 99 | reximdv |  | 
						
							| 101 | 82 100 | mpd |  |