Metamath Proof Explorer


Theorem chtppilimlem2

Description: Lemma for chtppilim . (Contributed by Mario Carneiro, 22-Sep-2014)

Ref Expression
Hypotheses chtppilim.1 φ A +
chtppilim.2 φ A < 1
Assertion chtppilimlem2 φ z x 2 +∞ z x A 2 π _ x log x < θ x

Proof

Step Hyp Ref Expression
1 chtppilim.1 φ A +
2 chtppilim.2 φ A < 1
3 simpr φ x 2 +∞ x 2 +∞
4 2re 2
5 elicopnf 2 x 2 +∞ x 2 x
6 4 5 ax-mp x 2 +∞ x 2 x
7 3 6 sylib φ x 2 +∞ x 2 x
8 7 simpld φ x 2 +∞ x
9 0red φ x 2 +∞ 0
10 4 a1i φ x 2 +∞ 2
11 2pos 0 < 2
12 11 a1i φ x 2 +∞ 0 < 2
13 7 simprd φ x 2 +∞ 2 x
14 9 10 8 12 13 ltletrd φ x 2 +∞ 0 < x
15 8 14 elrpd φ x 2 +∞ x +
16 1 rpred φ A
17 16 adantr φ x 2 +∞ A
18 15 17 rpcxpcld φ x 2 +∞ x A +
19 ppinncl x 2 x π _ x
20 7 19 syl φ x 2 +∞ π _ x
21 20 nnrpd φ x 2 +∞ π _ x +
22 18 21 rpdivcld φ x 2 +∞ x A π _ x +
23 22 ralrimiva φ x 2 +∞ x A π _ x +
24 1re 1
25 difrp A 1 A < 1 1 A +
26 16 24 25 sylancl φ A < 1 1 A +
27 2 26 mpbid φ 1 A +
28 ovexd φ 2 +∞ V
29 24 a1i φ x 2 +∞ 1
30 1lt2 1 < 2
31 30 a1i φ x 2 +∞ 1 < 2
32 29 10 8 31 13 ltletrd φ x 2 +∞ 1 < x
33 8 32 rplogcld φ x 2 +∞ log x +
34 15 33 rpdivcld φ x 2 +∞ x log x +
35 34 21 rpdivcld φ x 2 +∞ x log x π _ x +
36 27 adantr φ x 2 +∞ 1 A +
37 36 rpred φ x 2 +∞ 1 A
38 15 37 rpcxpcld φ x 2 +∞ x 1 A +
39 33 38 rpdivcld φ x 2 +∞ log x x 1 A +
40 eqidd φ x 2 +∞ x log x π _ x = x 2 +∞ x log x π _ x
41 eqidd φ x 2 +∞ log x x 1 A = x 2 +∞ log x x 1 A
42 28 35 39 40 41 offval2 φ x 2 +∞ x log x π _ x × f x 2 +∞ log x x 1 A = x 2 +∞ x log x π _ x log x x 1 A
43 34 rpcnd φ x 2 +∞ x log x
44 39 rpcnd φ x 2 +∞ log x x 1 A
45 21 rpcnne0d φ x 2 +∞ π _ x π _ x 0
46 div23 x log x log x x 1 A π _ x π _ x 0 x log x log x x 1 A π _ x = x log x π _ x log x x 1 A
47 43 44 45 46 syl3anc φ x 2 +∞ x log x log x x 1 A π _ x = x log x π _ x log x x 1 A
48 33 rpcnne0d φ x 2 +∞ log x log x 0
49 38 rpcnne0d φ x 2 +∞ x 1 A x 1 A 0
50 8 recnd φ x 2 +∞ x
51 dmdcan log x log x 0 x 1 A x 1 A 0 x log x x 1 A x log x = x x 1 A
52 48 49 50 51 syl3anc φ x 2 +∞ log x x 1 A x log x = x x 1 A
53 43 44 mulcomd φ x 2 +∞ x log x log x x 1 A = log x x 1 A x log x
54 15 rpcnne0d φ x 2 +∞ x x 0
55 ax-1cn 1
56 55 a1i φ x 2 +∞ 1
57 36 rpcnd φ x 2 +∞ 1 A
58 cxpsub x x 0 1 1 A x 1 1 A = x 1 x 1 A
59 54 56 57 58 syl3anc φ x 2 +∞ x 1 1 A = x 1 x 1 A
60 17 recnd φ x 2 +∞ A
61 nncan 1 A 1 1 A = A
62 55 60 61 sylancr φ x 2 +∞ 1 1 A = A
63 62 oveq2d φ x 2 +∞ x 1 1 A = x A
64 59 63 eqtr3d φ x 2 +∞ x 1 x 1 A = x A
65 50 cxp1d φ x 2 +∞ x 1 = x
66 65 oveq1d φ x 2 +∞ x 1 x 1 A = x x 1 A
67 64 66 eqtr3d φ x 2 +∞ x A = x x 1 A
68 52 53 67 3eqtr4d φ x 2 +∞ x log x log x x 1 A = x A
69 68 oveq1d φ x 2 +∞ x log x log x x 1 A π _ x = x A π _ x
70 47 69 eqtr3d φ x 2 +∞ x log x π _ x log x x 1 A = x A π _ x
71 70 mpteq2dva φ x 2 +∞ x log x π _ x log x x 1 A = x 2 +∞ x A π _ x
72 42 71 eqtrd φ x 2 +∞ x log x π _ x × f x 2 +∞ log x x 1 A = x 2 +∞ x A π _ x
73 chebbnd1 x 2 +∞ x log x π _ x 𝑂1
74 15 ex φ x 2 +∞ x +
75 74 ssrdv φ 2 +∞ +
76 cxploglim 1 A + x + log x x 1 A 0
77 27 76 syl φ x + log x x 1 A 0
78 75 77 rlimres2 φ x 2 +∞ log x x 1 A 0
79 o1rlimmul x 2 +∞ x log x π _ x 𝑂1 x 2 +∞ log x x 1 A 0 x 2 +∞ x log x π _ x × f x 2 +∞ log x x 1 A 0
80 73 78 79 sylancr φ x 2 +∞ x log x π _ x × f x 2 +∞ log x x 1 A 0
81 72 80 eqbrtrrd φ x 2 +∞ x A π _ x 0
82 23 27 81 rlimi φ z x 2 +∞ z x x A π _ x 0 < 1 A
83 22 rpcnd φ x 2 +∞ x A π _ x
84 83 subid1d φ x 2 +∞ x A π _ x 0 = x A π _ x
85 84 fveq2d φ x 2 +∞ x A π _ x 0 = x A π _ x
86 22 rpred φ x 2 +∞ x A π _ x
87 22 rpge0d φ x 2 +∞ 0 x A π _ x
88 86 87 absidd φ x 2 +∞ x A π _ x = x A π _ x
89 85 88 eqtrd φ x 2 +∞ x A π _ x 0 = x A π _ x
90 89 breq1d φ x 2 +∞ x A π _ x 0 < 1 A x A π _ x < 1 A
91 1 adantr φ x 2 +∞ x A π _ x < 1 A A +
92 2 adantr φ x 2 +∞ x A π _ x < 1 A A < 1
93 simprl φ x 2 +∞ x A π _ x < 1 A x 2 +∞
94 simprr φ x 2 +∞ x A π _ x < 1 A x A π _ x < 1 A
95 91 92 93 94 chtppilimlem1 φ x 2 +∞ x A π _ x < 1 A A 2 π _ x log x < θ x
96 95 expr φ x 2 +∞ x A π _ x < 1 A A 2 π _ x log x < θ x
97 90 96 sylbid φ x 2 +∞ x A π _ x 0 < 1 A A 2 π _ x log x < θ x
98 97 imim2d φ x 2 +∞ z x x A π _ x 0 < 1 A z x A 2 π _ x log x < θ x
99 98 ralimdva φ x 2 +∞ z x x A π _ x 0 < 1 A x 2 +∞ z x A 2 π _ x log x < θ x
100 99 reximdv φ z x 2 +∞ z x x A π _ x 0 < 1 A z x 2 +∞ z x A 2 π _ x log x < θ x
101 82 100 mpd φ z x 2 +∞ z x A 2 π _ x log x < θ x