Metamath Proof Explorer


Theorem climsup

Description: A bounded monotonic sequence converges to the supremum of its range. Theorem 12-5.1 of Gleason p. 180. (Contributed by NM, 13-Mar-2005) (Revised by Mario Carneiro, 10-Feb-2014)

Ref Expression
Hypotheses climsup.1 Z=M
climsup.2 φM
climsup.3 φF:Z
climsup.4 φkZFkFk+1
climsup.5 φxkZFkx
Assertion climsup φFsupranF<

Proof

Step Hyp Ref Expression
1 climsup.1 Z=M
2 climsup.2 φM
3 climsup.3 φF:Z
4 climsup.4 φkZFkFk+1
5 climsup.5 φxkZFkx
6 3 frnd φranF
7 3 ffnd φFFnZ
8 uzid MMM
9 2 8 syl φMM
10 9 1 eleqtrrdi φMZ
11 fnfvelrn FFnZMZFMranF
12 7 10 11 syl2anc φFMranF
13 12 ne0d φranF
14 breq1 y=FkyxFkx
15 14 ralrn FFnZyranFyxkZFkx
16 15 rexbidv FFnZxyranFyxxkZFkx
17 7 16 syl φxyranFyxxkZFkx
18 5 17 mpbird φxyranFyx
19 6 13 18 3jca φranFranFxyranFyx
20 suprcl ranFranFxyranFyxsupranF<
21 19 20 syl φsupranF<
22 ltsubrp supranF<y+supranF<y<supranF<
23 21 22 sylan φy+supranF<y<supranF<
24 19 adantr φy+ranFranFxyranFyx
25 rpre y+y
26 resubcl supranF<ysupranF<y
27 21 25 26 syl2an φy+supranF<y
28 suprlub ranFranFxyranFyxsupranF<ysupranF<y<supranF<kranFsupranF<y<k
29 24 27 28 syl2anc φy+supranF<y<supranF<kranFsupranF<y<k
30 23 29 mpbid φy+kranFsupranF<y<k
31 breq2 k=FjsupranF<y<ksupranF<y<Fj
32 31 rexrn FFnZkranFsupranF<y<kjZsupranF<y<Fj
33 7 32 syl φkranFsupranF<y<kjZsupranF<y<Fj
34 33 biimpa φkranFsupranF<y<kjZsupranF<y<Fj
35 30 34 syldan φy+jZsupranF<y<Fj
36 ffvelcdm F:ZjZFj
37 3 36 sylan φjZFj
38 37 ad2ant2r φy+jZkjFj
39 3 adantr φy+F:Z
40 1 uztrn2 jZkjkZ
41 ffvelcdm F:ZkZFk
42 39 40 41 syl2an φy+jZkjFk
43 21 ad2antrr φy+jZkjsupranF<
44 simprr φy+jZkjkj
45 fzssuz jkj
46 uzss jMjM
47 46 1 sseqtrrdi jMjZ
48 47 1 eleq2s jZjZ
49 48 ad2antrl φy+jZkjjZ
50 45 49 sstrid φy+jZkjjkZ
51 ffvelcdm F:ZnZFn
52 51 ralrimiva F:ZnZFn
53 3 52 syl φnZFn
54 53 ad2antrr φy+jZkjnZFn
55 ssralv jkZnZFnnjkFn
56 50 54 55 sylc φy+jZkjnjkFn
57 56 r19.21bi φy+jZkjnjkFn
58 fzssuz jk1j
59 58 49 sstrid φy+jZkjjk1Z
60 59 sselda φy+jZkjnjk1nZ
61 4 ralrimiva φkZFkFk+1
62 61 ad2antrr φy+jZkjkZFkFk+1
63 fveq2 k=nFk=Fn
64 fvoveq1 k=nFk+1=Fn+1
65 63 64 breq12d k=nFkFk+1FnFn+1
66 65 rspccva kZFkFk+1nZFnFn+1
67 62 66 sylan φy+jZkjnZFnFn+1
68 60 67 syldan φy+jZkjnjk1FnFn+1
69 44 57 68 monoord φy+jZkjFjFk
70 38 42 43 69 lesub2dd φy+jZkjsupranF<FksupranF<Fj
71 43 42 resubcld φy+jZkjsupranF<Fk
72 43 38 resubcld φy+jZkjsupranF<Fj
73 25 ad2antlr φy+jZkjy
74 lelttr supranF<FksupranF<FjysupranF<FksupranF<FjsupranF<Fj<ysupranF<Fk<y
75 71 72 73 74 syl3anc φy+jZkjsupranF<FksupranF<FjsupranF<Fj<ysupranF<Fk<y
76 70 75 mpand φy+jZkjsupranF<Fj<ysupranF<Fk<y
77 ltsub23 supranF<yFjsupranF<y<FjsupranF<Fj<y
78 43 73 38 77 syl3anc φy+jZkjsupranF<y<FjsupranF<Fj<y
79 19 ad2antrr φy+jZkjranFranFxyranFyx
80 7 adantr φy+FFnZ
81 fnfvelrn FFnZkZFkranF
82 80 40 81 syl2an φy+jZkjFkranF
83 suprub ranFranFxyranFyxFkranFFksupranF<
84 79 82 83 syl2anc φy+jZkjFksupranF<
85 42 43 84 abssuble0d φy+jZkjFksupranF<=supranF<Fk
86 85 breq1d φy+jZkjFksupranF<<ysupranF<Fk<y
87 76 78 86 3imtr4d φy+jZkjsupranF<y<FjFksupranF<<y
88 87 anassrs φy+jZkjsupranF<y<FjFksupranF<<y
89 88 ralrimdva φy+jZsupranF<y<FjkjFksupranF<<y
90 89 reximdva φy+jZsupranF<y<FjjZkjFksupranF<<y
91 35 90 mpd φy+jZkjFksupranF<<y
92 91 ralrimiva φy+jZkjFksupranF<<y
93 1 fvexi ZV
94 fex F:ZZVFV
95 3 93 94 sylancl φFV
96 eqidd φkZFk=Fk
97 21 recnd φsupranF<
98 3 41 sylan φkZFk
99 98 recnd φkZFk
100 1 2 95 96 97 99 clim2c φFsupranF<y+jZkjFksupranF<<y
101 92 100 mpbird φFsupranF<