| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwlkclwwlk.v |  | 
						
							| 2 |  | clwlkclwwlk.e |  | 
						
							| 3 | 2 | uspgrf1oedg |  | 
						
							| 4 |  | f1of1 |  | 
						
							| 5 | 3 4 | syl |  | 
						
							| 6 |  | clwlkclwwlklem3 |  | 
						
							| 7 | 5 6 | syl3an1 |  | 
						
							| 8 |  | lencl |  | 
						
							| 9 |  | ige2m1fz |  | 
						
							| 10 | 8 9 | sylan |  | 
						
							| 11 |  | pfxlen |  | 
						
							| 12 | 10 11 | syldan |  | 
						
							| 13 | 8 | nn0cnd |  | 
						
							| 14 |  | 1cnd |  | 
						
							| 15 | 13 14 | subcld |  | 
						
							| 16 | 15 | subid1d |  | 
						
							| 17 | 16 | eqcomd |  | 
						
							| 18 | 17 | adantr |  | 
						
							| 19 | 12 18 | eqtrd |  | 
						
							| 20 | 19 | oveq1d |  | 
						
							| 21 | 20 | oveq2d |  | 
						
							| 22 | 12 | oveq1d |  | 
						
							| 23 | 22 | oveq2d |  | 
						
							| 24 | 23 | eleq2d |  | 
						
							| 25 |  | simpll |  | 
						
							| 26 |  | wrdlenge2n0 |  | 
						
							| 27 | 26 | adantr |  | 
						
							| 28 |  | nn0z |  | 
						
							| 29 |  | peano2zm |  | 
						
							| 30 | 28 29 | syl |  | 
						
							| 31 | 8 30 | syl |  | 
						
							| 32 | 31 | adantr |  | 
						
							| 33 |  | elfzom1elfzo |  | 
						
							| 34 | 32 33 | sylan |  | 
						
							| 35 |  | pfxtrcfv |  | 
						
							| 36 | 25 27 34 35 | syl3anc |  | 
						
							| 37 | 8 | adantr |  | 
						
							| 38 |  | elfzom1elp1fzo |  | 
						
							| 39 | 30 38 | sylan |  | 
						
							| 40 | 37 39 | sylan |  | 
						
							| 41 |  | pfxtrcfv |  | 
						
							| 42 | 25 27 40 41 | syl3anc |  | 
						
							| 43 | 36 42 | preq12d |  | 
						
							| 44 | 43 | eleq1d |  | 
						
							| 45 | 44 | ex |  | 
						
							| 46 | 24 45 | sylbid |  | 
						
							| 47 | 46 | imp |  | 
						
							| 48 | 21 47 | raleqbidva |  | 
						
							| 49 |  | pfxtrcfvl |  | 
						
							| 50 |  | pfxtrcfv0 |  | 
						
							| 51 | 49 50 | preq12d |  | 
						
							| 52 | 51 | eleq1d |  | 
						
							| 53 | 48 52 | anbi12d |  | 
						
							| 54 | 53 | bicomd |  | 
						
							| 55 | 54 | 3adant1 |  | 
						
							| 56 |  | pfxcl |  | 
						
							| 57 | 56 | 3ad2ant2 |  | 
						
							| 58 | 57 | 3biant1d |  | 
						
							| 59 | 55 58 | bitrd |  | 
						
							| 60 | 59 | anbi2d |  | 
						
							| 61 | 7 60 | bitrd |  | 
						
							| 62 |  | uspgrupgr |  | 
						
							| 63 | 1 2 | isclwlkupgr |  | 
						
							| 64 |  | 3an4anass |  | 
						
							| 65 | 63 64 | bitr4di |  | 
						
							| 66 | 62 65 | syl |  | 
						
							| 67 | 66 | adantr |  | 
						
							| 68 | 67 | exbidv |  | 
						
							| 69 | 68 | 3adant3 |  | 
						
							| 70 |  | eqid |  | 
						
							| 71 | 1 70 | isclwwlk |  | 
						
							| 72 |  | simpl |  | 
						
							| 73 |  | nn0ge2m1nn |  | 
						
							| 74 | 8 73 | sylan |  | 
						
							| 75 |  | nn0re |  | 
						
							| 76 | 75 | lem1d |  | 
						
							| 77 | 76 | a1d |  | 
						
							| 78 | 8 77 | syl |  | 
						
							| 79 | 78 | imp |  | 
						
							| 80 | 72 74 79 | 3jca |  | 
						
							| 81 | 80 | 3adant1 |  | 
						
							| 82 |  | pfxn0 |  | 
						
							| 83 | 81 82 | syl |  | 
						
							| 84 | 83 | biantrud |  | 
						
							| 85 | 84 | bicomd |  | 
						
							| 86 | 85 | 3anbi1d |  | 
						
							| 87 | 71 86 | bitrid |  | 
						
							| 88 |  | biid |  | 
						
							| 89 |  | edgval |  | 
						
							| 90 | 2 | eqcomi |  | 
						
							| 91 | 90 | rneqi |  | 
						
							| 92 | 89 91 | eqtri |  | 
						
							| 93 | 92 | eleq2i |  | 
						
							| 94 | 93 | ralbii |  | 
						
							| 95 | 92 | eleq2i |  | 
						
							| 96 | 88 94 95 | 3anbi123i |  | 
						
							| 97 | 87 96 | bitrdi |  | 
						
							| 98 | 97 | anbi2d |  | 
						
							| 99 | 61 69 98 | 3bitr4d |  |