Metamath Proof Explorer


Theorem clwlkclwwlk

Description: A closed walk as word of length at least 2 corresponds to a closed walk in a simple pseudograph. (Contributed by Alexander van der Vekens, 22-Jun-2018) (Revised by AV, 24-Apr-2021) (Revised by AV, 30-Oct-2022)

Ref Expression
Hypotheses clwlkclwwlk.v V=VtxG
clwlkclwwlk.e E=iEdgG
Assertion clwlkclwwlk GUSHGraphPWordV2PffClWalksGPlastSP=P0PprefixP1ClWWalksG

Proof

Step Hyp Ref Expression
1 clwlkclwwlk.v V=VtxG
2 clwlkclwwlk.e E=iEdgG
3 2 uspgrf1oedg GUSHGraphE:domE1-1 ontoEdgG
4 f1of1 E:domE1-1 ontoEdgGE:domE1-1EdgG
5 3 4 syl GUSHGraphE:domE1-1EdgG
6 clwlkclwwlklem3 E:domE1-1EdgGPWordV2PffWorddomEP:0fVi0..^fEfi=PiPi+1P0=PflastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranE
7 5 6 syl3an1 GUSHGraphPWordV2PffWorddomEP:0fVi0..^fEfi=PiPi+1P0=PflastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranE
8 lencl PWordVP0
9 ige2m1fz P02PP10P
10 8 9 sylan PWordV2PP10P
11 pfxlen PWordVP10PPprefixP1=P1
12 10 11 syldan PWordV2PPprefixP1=P1
13 8 nn0cnd PWordVP
14 1cnd PWordV1
15 13 14 subcld PWordVP1
16 15 subid1d PWordVP-1-0=P1
17 16 eqcomd PWordVP1=P-1-0
18 17 adantr PWordV2PP1=P-1-0
19 12 18 eqtrd PWordV2PPprefixP1=P-1-0
20 19 oveq1d PWordV2PPprefixP11=P1-0-1
21 20 oveq2d PWordV2P0..^PprefixP11=0..^P1-0-1
22 12 oveq1d PWordV2PPprefixP11=P-1-1
23 22 oveq2d PWordV2P0..^PprefixP11=0..^P-1-1
24 23 eleq2d PWordV2Pi0..^PprefixP11i0..^P-1-1
25 simpll PWordV2Pi0..^P-1-1PWordV
26 wrdlenge2n0 PWordV2PP
27 26 adantr PWordV2Pi0..^P-1-1P
28 nn0z P0P
29 peano2zm PP1
30 28 29 syl P0P1
31 8 30 syl PWordVP1
32 31 adantr PWordV2PP1
33 elfzom1elfzo P1i0..^P-1-1i0..^P1
34 32 33 sylan PWordV2Pi0..^P-1-1i0..^P1
35 pfxtrcfv PWordVPi0..^P1PprefixP1i=Pi
36 25 27 34 35 syl3anc PWordV2Pi0..^P-1-1PprefixP1i=Pi
37 8 adantr PWordV2PP0
38 elfzom1elp1fzo P1i0..^P-1-1i+10..^P1
39 30 38 sylan P0i0..^P-1-1i+10..^P1
40 37 39 sylan PWordV2Pi0..^P-1-1i+10..^P1
41 pfxtrcfv PWordVPi+10..^P1PprefixP1i+1=Pi+1
42 25 27 40 41 syl3anc PWordV2Pi0..^P-1-1PprefixP1i+1=Pi+1
43 36 42 preq12d PWordV2Pi0..^P-1-1PprefixP1iPprefixP1i+1=PiPi+1
44 43 eleq1d PWordV2Pi0..^P-1-1PprefixP1iPprefixP1i+1ranEPiPi+1ranE
45 44 ex PWordV2Pi0..^P-1-1PprefixP1iPprefixP1i+1ranEPiPi+1ranE
46 24 45 sylbid PWordV2Pi0..^PprefixP11PprefixP1iPprefixP1i+1ranEPiPi+1ranE
47 46 imp PWordV2Pi0..^PprefixP11PprefixP1iPprefixP1i+1ranEPiPi+1ranE
48 21 47 raleqbidva PWordV2Pi0..^PprefixP11PprefixP1iPprefixP1i+1ranEi0..^P1-0-1PiPi+1ranE
49 pfxtrcfvl PWordV2PlastSPprefixP1=PP2
50 pfxtrcfv0 PWordV2PPprefixP10=P0
51 49 50 preq12d PWordV2PlastSPprefixP1PprefixP10=PP2P0
52 51 eleq1d PWordV2PlastSPprefixP1PprefixP10ranEPP2P0ranE
53 48 52 anbi12d PWordV2Pi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranEi0..^P1-0-1PiPi+1ranEPP2P0ranE
54 53 bicomd PWordV2Pi0..^P1-0-1PiPi+1ranEPP2P0ranEi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
55 54 3adant1 GUSHGraphPWordV2Pi0..^P1-0-1PiPi+1ranEPP2P0ranEi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
56 pfxcl PWordVPprefixP1WordV
57 56 3ad2ant2 GUSHGraphPWordV2PPprefixP1WordV
58 57 3biant1d GUSHGraphPWordV2Pi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranEPprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
59 55 58 bitrd GUSHGraphPWordV2Pi0..^P1-0-1PiPi+1ranEPP2P0ranEPprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
60 59 anbi2d GUSHGraphPWordV2PlastSP=P0i0..^P1-0-1PiPi+1ranEPP2P0ranElastSP=P0PprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
61 7 60 bitrd GUSHGraphPWordV2PffWorddomEP:0fVi0..^fEfi=PiPi+1P0=PflastSP=P0PprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
62 uspgrupgr GUSHGraphGUPGraph
63 1 2 isclwlkupgr GUPGraphfClWalksGPfWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
64 3an4anass fWorddomEP:0fVi0..^fEfi=PiPi+1P0=PffWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
65 63 64 bitr4di GUPGraphfClWalksGPfWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
66 62 65 syl GUSHGraphfClWalksGPfWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
67 66 adantr GUSHGraphPWordVfClWalksGPfWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
68 67 exbidv GUSHGraphPWordVffClWalksGPffWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
69 68 3adant3 GUSHGraphPWordV2PffClWalksGPffWorddomEP:0fVi0..^fEfi=PiPi+1P0=Pf
70 eqid EdgG=EdgG
71 1 70 isclwwlk PprefixP1ClWWalksGPprefixP1WordVPprefixP1i0..^PprefixP11PprefixP1iPprefixP1i+1EdgGlastSPprefixP1PprefixP10EdgG
72 simpl PWordV2PPWordV
73 nn0ge2m1nn P02PP1
74 8 73 sylan PWordV2PP1
75 nn0re P0P
76 75 lem1d P0P1P
77 76 a1d P02PP1P
78 8 77 syl PWordV2PP1P
79 78 imp PWordV2PP1P
80 72 74 79 3jca PWordV2PPWordVP1P1P
81 80 3adant1 GUSHGraphPWordV2PPWordVP1P1P
82 pfxn0 PWordVP1P1PPprefixP1
83 81 82 syl GUSHGraphPWordV2PPprefixP1
84 83 biantrud GUSHGraphPWordV2PPprefixP1WordVPprefixP1WordVPprefixP1
85 84 bicomd GUSHGraphPWordV2PPprefixP1WordVPprefixP1PprefixP1WordV
86 85 3anbi1d GUSHGraphPWordV2PPprefixP1WordVPprefixP1i0..^PprefixP11PprefixP1iPprefixP1i+1EdgGlastSPprefixP1PprefixP10EdgGPprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1EdgGlastSPprefixP1PprefixP10EdgG
87 71 86 bitrid GUSHGraphPWordV2PPprefixP1ClWWalksGPprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1EdgGlastSPprefixP1PprefixP10EdgG
88 biid PprefixP1WordVPprefixP1WordV
89 edgval EdgG=raniEdgG
90 2 eqcomi iEdgG=E
91 90 rneqi raniEdgG=ranE
92 89 91 eqtri EdgG=ranE
93 92 eleq2i PprefixP1iPprefixP1i+1EdgGPprefixP1iPprefixP1i+1ranE
94 93 ralbii i0..^PprefixP11PprefixP1iPprefixP1i+1EdgGi0..^PprefixP11PprefixP1iPprefixP1i+1ranE
95 92 eleq2i lastSPprefixP1PprefixP10EdgGlastSPprefixP1PprefixP10ranE
96 88 94 95 3anbi123i PprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1EdgGlastSPprefixP1PprefixP10EdgGPprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
97 87 96 bitrdi GUSHGraphPWordV2PPprefixP1ClWWalksGPprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
98 97 anbi2d GUSHGraphPWordV2PlastSP=P0PprefixP1ClWWalksGlastSP=P0PprefixP1WordVi0..^PprefixP11PprefixP1iPprefixP1i+1ranElastSPprefixP1PprefixP10ranE
99 61 69 98 3bitr4d GUSHGraphPWordV2PffClWalksGPlastSP=P0PprefixP1ClWWalksG