Metamath Proof Explorer


Theorem coe1tmmul2

Description: Coefficient vector of a polynomial multiplied on the right by a term. (Contributed by Stefan O'Rear, 27-Mar-2015)

Ref Expression
Hypotheses coe1tm.z 0˙=0R
coe1tm.k K=BaseR
coe1tm.p P=Poly1R
coe1tm.x X=var1R
coe1tm.m ·˙=P
coe1tm.n N=mulGrpP
coe1tm.e ×˙=N
coe1tmmul.b B=BaseP
coe1tmmul.t ˙=P
coe1tmmul.u ×˙=R
coe1tmmul.a φAB
coe1tmmul.r φRRing
coe1tmmul.c φCK
coe1tmmul.d φD0
Assertion coe1tmmul2 φcoe1A˙C·˙D×˙X=x0ifDxcoe1AxD×˙C0˙

Proof

Step Hyp Ref Expression
1 coe1tm.z 0˙=0R
2 coe1tm.k K=BaseR
3 coe1tm.p P=Poly1R
4 coe1tm.x X=var1R
5 coe1tm.m ·˙=P
6 coe1tm.n N=mulGrpP
7 coe1tm.e ×˙=N
8 coe1tmmul.b B=BaseP
9 coe1tmmul.t ˙=P
10 coe1tmmul.u ×˙=R
11 coe1tmmul.a φAB
12 coe1tmmul.r φRRing
13 coe1tmmul.c φCK
14 coe1tmmul.d φD0
15 2 3 4 5 6 7 8 ply1tmcl RRingCKD0C·˙D×˙XB
16 12 13 14 15 syl3anc φC·˙D×˙XB
17 3 9 10 8 coe1mul RRingABC·˙D×˙XBcoe1A˙C·˙D×˙X=x0Ry=0xcoe1Ay×˙coe1C·˙D×˙Xxy
18 12 11 16 17 syl3anc φcoe1A˙C·˙D×˙X=x0Ry=0xcoe1Ay×˙coe1C·˙D×˙Xxy
19 eqeq2 coe1AxD×˙C=ifDxcoe1AxD×˙C0˙Ry=0xcoe1Ay×˙coe1C·˙D×˙Xxy=coe1AxD×˙CRy=0xcoe1Ay×˙coe1C·˙D×˙Xxy=ifDxcoe1AxD×˙C0˙
20 eqeq2 0˙=ifDxcoe1AxD×˙C0˙Ry=0xcoe1Ay×˙coe1C·˙D×˙Xxy=0˙Ry=0xcoe1Ay×˙coe1C·˙D×˙Xxy=ifDxcoe1AxD×˙C0˙
21 12 adantr φx0DxRRing
22 ringmnd RRingRMnd
23 21 22 syl φx0DxRMnd
24 ovex 0xV
25 24 a1i φx0Dx0xV
26 simprr φx0DxDx
27 14 adantr φx0DxD0
28 simprl φx0Dxx0
29 nn0sub D0x0DxxD0
30 27 28 29 syl2anc φx0DxDxxD0
31 26 30 mpbid φx0DxxD0
32 27 nn0ge0d φx0Dx0D
33 nn0re x0x
34 33 ad2antrl φx0Dxx
35 14 nn0red φD
36 35 adantr φx0DxD
37 34 36 subge02d φx0Dx0DxDx
38 32 37 mpbid φx0DxxDx
39 fznn0 x0xD0xxD0xDx
40 39 ad2antrl φx0DxxD0xxD0xDx
41 31 38 40 mpbir2and φx0DxxD0x
42 12 ad2antrr φx0Dxy0xRRing
43 eqid coe1A=coe1A
44 43 8 3 2 coe1f ABcoe1A:0K
45 11 44 syl φcoe1A:0K
46 45 ad2antrr φx0Dxy0xcoe1A:0K
47 elfznn0 y0xy0
48 47 adantl φx0Dxy0xy0
49 46 48 ffvelcdmd φx0Dxy0xcoe1AyK
50 eqid coe1C·˙D×˙X=coe1C·˙D×˙X
51 50 8 3 2 coe1f C·˙D×˙XBcoe1C·˙D×˙X:0K
52 16 51 syl φcoe1C·˙D×˙X:0K
53 52 ad2antrr φx0Dxy0xcoe1C·˙D×˙X:0K
54 fznn0sub y0xxy0
55 54 adantl φx0Dxy0xxy0
56 53 55 ffvelcdmd φx0Dxy0xcoe1C·˙D×˙XxyK
57 2 10 ringcl RRingcoe1AyKcoe1C·˙D×˙XxyKcoe1Ay×˙coe1C·˙D×˙XxyK
58 42 49 56 57 syl3anc φx0Dxy0xcoe1Ay×˙coe1C·˙D×˙XxyK
59 58 fmpttd φx0Dxy0xcoe1Ay×˙coe1C·˙D×˙Xxy:0xK
60 12 ad2antrr φx0Dxy0xxDRRing
61 13 ad2antrr φx0Dxy0xxDCK
62 14 ad2antrr φx0Dxy0xxDD0
63 eldifi y0xxDy0x
64 63 54 syl y0xxDxy0
65 64 adantl φx0Dxy0xxDxy0
66 eldifsn y0xxDy0xyxD
67 simplrl φx0Dxy0xx0
68 67 nn0cnd φx0Dxy0xx
69 47 nn0cnd y0xy
70 69 adantl φx0Dxy0xy
71 68 70 nncand φx0Dxy0xxxy=y
72 71 eqcomd φx0Dxy0xy=xxy
73 oveq2 D=xyxD=xxy
74 73 eqeq2d D=xyy=xDy=xxy
75 72 74 syl5ibrcom φx0Dxy0xD=xyy=xD
76 75 necon3d φx0Dxy0xyxDDxy
77 76 impr φx0Dxy0xyxDDxy
78 66 77 sylan2b φx0Dxy0xxDDxy
79 1 2 3 4 5 6 7 60 61 62 65 78 coe1tmfv2 φx0Dxy0xxDcoe1C·˙D×˙Xxy=0˙
80 79 oveq2d φx0Dxy0xxDcoe1Ay×˙coe1C·˙D×˙Xxy=coe1Ay×˙0˙
81 2 10 1 ringrz RRingcoe1AyKcoe1Ay×˙0˙=0˙
82 42 49 81 syl2anc φx0Dxy0xcoe1Ay×˙0˙=0˙
83 63 82 sylan2 φx0Dxy0xxDcoe1Ay×˙0˙=0˙
84 80 83 eqtrd φx0Dxy0xxDcoe1Ay×˙coe1C·˙D×˙Xxy=0˙
85 84 25 suppss2 φx0Dxy0xcoe1Ay×˙coe1C·˙D×˙Xxysupp0˙xD
86 2 1 23 25 41 59 85 gsumpt φx0DxRy=0xcoe1Ay×˙coe1C·˙D×˙Xxy=y0xcoe1Ay×˙coe1C·˙D×˙XxyxD
87 fveq2 y=xDcoe1Ay=coe1AxD
88 oveq2 y=xDxy=xxD
89 88 fveq2d y=xDcoe1C·˙D×˙Xxy=coe1C·˙D×˙XxxD
90 87 89 oveq12d y=xDcoe1Ay×˙coe1C·˙D×˙Xxy=coe1AxD×˙coe1C·˙D×˙XxxD
91 eqid y0xcoe1Ay×˙coe1C·˙D×˙Xxy=y0xcoe1Ay×˙coe1C·˙D×˙Xxy
92 ovex coe1AxD×˙coe1C·˙D×˙XxxDV
93 90 91 92 fvmpt xD0xy0xcoe1Ay×˙coe1C·˙D×˙XxyxD=coe1AxD×˙coe1C·˙D×˙XxxD
94 41 93 syl φx0Dxy0xcoe1Ay×˙coe1C·˙D×˙XxyxD=coe1AxD×˙coe1C·˙D×˙XxxD
95 28 nn0cnd φx0Dxx
96 27 nn0cnd φx0DxD
97 95 96 nncand φx0DxxxD=D
98 97 fveq2d φx0Dxcoe1C·˙D×˙XxxD=coe1C·˙D×˙XD
99 13 adantr φx0DxCK
100 1 2 3 4 5 6 7 coe1tmfv1 RRingCKD0coe1C·˙D×˙XD=C
101 21 99 27 100 syl3anc φx0Dxcoe1C·˙D×˙XD=C
102 98 101 eqtrd φx0Dxcoe1C·˙D×˙XxxD=C
103 102 oveq2d φx0Dxcoe1AxD×˙coe1C·˙D×˙XxxD=coe1AxD×˙C
104 86 94 103 3eqtrd φx0DxRy=0xcoe1Ay×˙coe1C·˙D×˙Xxy=coe1AxD×˙C
105 104 anassrs φx0DxRy=0xcoe1Ay×˙coe1C·˙D×˙Xxy=coe1AxD×˙C
106 12 ad2antrr φx0¬Dxy0xRRing
107 13 ad2antrr φx0¬Dxy0xCK
108 14 ad2antrr φx0¬Dxy0xD0
109 54 ad2antll φx0¬Dxy0xxy0
110 54 nn0red y0xxy
111 110 ad2antll φx0¬Dxy0xxy
112 33 ad2antlr φx0¬Dxy0xx
113 35 ad2antrr φx0¬Dxy0xD
114 47 ad2antll φx0¬Dxy0xy0
115 114 nn0ge0d φx0¬Dxy0x0y
116 47 nn0red y0xy
117 116 ad2antll φx0¬Dxy0xy
118 112 117 subge02d φx0¬Dxy0x0yxyx
119 115 118 mpbid φx0¬Dxy0xxyx
120 simprl φx0¬Dxy0x¬Dx
121 112 113 ltnled φx0¬Dxy0xx<D¬Dx
122 120 121 mpbird φx0¬Dxy0xx<D
123 111 112 113 119 122 lelttrd φx0¬Dxy0xxy<D
124 111 123 gtned φx0¬Dxy0xDxy
125 1 2 3 4 5 6 7 106 107 108 109 124 coe1tmfv2 φx0¬Dxy0xcoe1C·˙D×˙Xxy=0˙
126 125 oveq2d φx0¬Dxy0xcoe1Ay×˙coe1C·˙D×˙Xxy=coe1Ay×˙0˙
127 45 ad2antrr φx0¬Dxy0xcoe1A:0K
128 127 114 ffvelcdmd φx0¬Dxy0xcoe1AyK
129 106 128 81 syl2anc φx0¬Dxy0xcoe1Ay×˙0˙=0˙
130 126 129 eqtrd φx0¬Dxy0xcoe1Ay×˙coe1C·˙D×˙Xxy=0˙
131 130 anassrs φx0¬Dxy0xcoe1Ay×˙coe1C·˙D×˙Xxy=0˙
132 131 mpteq2dva φx0¬Dxy0xcoe1Ay×˙coe1C·˙D×˙Xxy=y0x0˙
133 132 oveq2d φx0¬DxRy=0xcoe1Ay×˙coe1C·˙D×˙Xxy=Ry=0x0˙
134 12 22 syl φRMnd
135 1 gsumz RMnd0xVRy=0x0˙=0˙
136 134 24 135 sylancl φRy=0x0˙=0˙
137 136 ad2antrr φx0¬DxRy=0x0˙=0˙
138 133 137 eqtrd φx0¬DxRy=0xcoe1Ay×˙coe1C·˙D×˙Xxy=0˙
139 19 20 105 138 ifbothda φx0Ry=0xcoe1Ay×˙coe1C·˙D×˙Xxy=ifDxcoe1AxD×˙C0˙
140 139 mpteq2dva φx0Ry=0xcoe1Ay×˙coe1C·˙D×˙Xxy=x0ifDxcoe1AxD×˙C0˙
141 18 140 eqtrd φcoe1A˙C·˙D×˙X=x0ifDxcoe1AxD×˙C0˙