Metamath Proof Explorer


Theorem coeidlem

Description: Lemma for coeid . (Contributed by Mario Carneiro, 22-Jul-2014)

Ref Expression
Hypotheses dgrub.1 A=coeffF
dgrub.2 N=degF
coeid.3 φFPolyS
coeid.4 φM0
coeid.5 φBS00
coeid.6 φBM+1=0
coeid.7 φF=zk=0MBkzk
Assertion coeidlem φF=zk=0NAkzk

Proof

Step Hyp Ref Expression
1 dgrub.1 A=coeffF
2 dgrub.2 N=degF
3 coeid.3 φFPolyS
4 coeid.4 φM0
5 coeid.5 φBS00
6 coeid.6 φBM+1=0
7 coeid.7 φF=zk=0MBkzk
8 plybss FPolySS
9 3 8 syl φS
10 0cnd φ0
11 10 snssd φ0
12 9 11 unssd φS0
13 cnex V
14 ssexg S0VS0V
15 12 13 14 sylancl φS0V
16 nn0ex 0V
17 elmapg S0V0VBS00B:0S0
18 15 16 17 sylancl φBS00B:0S0
19 5 18 mpbid φB:0S0
20 19 12 fssd φB:0
21 3 4 20 6 7 coeeq φcoeffF=B
22 1 21 eqtr2id φB=A
23 22 adantr φzB=A
24 fveq1 B=ABk=Ak
25 24 oveq1d B=ABkzk=Akzk
26 25 sumeq2sdv B=Ak=0MBkzk=k=0MAkzk
27 23 26 syl φzk=0MBkzk=k=0MAkzk
28 3 adantr φzFPolyS
29 dgrcl FPolySdegF0
30 2 29 eqeltrid FPolySN0
31 28 30 syl φzN0
32 31 nn0zd φzN
33 4 adantr φzM0
34 33 nn0zd φzM
35 23 imaeq1d φzBM+1=AM+1
36 6 adantr φzBM+1=0
37 35 36 eqtr3d φzAM+1=0
38 1 2 dgrlb FPolySM0AM+1=0NM
39 28 33 37 38 syl3anc φzNM
40 eluz2 MNNMNM
41 32 34 39 40 syl3anbrc φzMN
42 fzss2 MN0N0M
43 41 42 syl φz0N0M
44 elfznn0 k0Nk0
45 plyssc PolySPoly
46 45 3 sselid φFPoly
47 1 coef3 FPolyA:0
48 46 47 syl φA:0
49 48 adantr φzA:0
50 49 ffvelcdmda φzk0Ak
51 expcl zk0zk
52 51 adantll φzk0zk
53 50 52 mulcld φzk0Akzk
54 44 53 sylan2 φzk0NAkzk
55 eldifn k0M0N¬k0N
56 55 adantl φzk0M0N¬k0N
57 eldifi k0M0Nk0M
58 elfznn0 k0Mk0
59 57 58 syl k0M0Nk0
60 1 2 dgrub FPolySk0Ak0kN
61 60 3expia FPolySk0Ak0kN
62 28 59 61 syl2an φzk0M0NAk0kN
63 elfzuz k0Mk0
64 57 63 syl k0M0Nk0
65 elfz5 k0Nk0NkN
66 64 32 65 syl2anr φzk0M0Nk0NkN
67 62 66 sylibrd φzk0M0NAk0k0N
68 67 necon1bd φzk0M0N¬k0NAk=0
69 56 68 mpd φzk0M0NAk=0
70 69 oveq1d φzk0M0NAkzk=0zk
71 simpr φzz
72 71 59 51 syl2an φzk0M0Nzk
73 72 mul02d φzk0M0N0zk=0
74 70 73 eqtrd φzk0M0NAkzk=0
75 fzfid φz0MFin
76 43 54 74 75 fsumss φzk=0NAkzk=k=0MAkzk
77 27 76 eqtr4d φzk=0MBkzk=k=0NAkzk
78 77 mpteq2dva φzk=0MBkzk=zk=0NAkzk
79 7 78 eqtrd φF=zk=0NAkzk