| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpmadugsum.a |  | 
						
							| 2 |  | cpmadugsum.b |  | 
						
							| 3 |  | cpmadugsum.p |  | 
						
							| 4 |  | cpmadugsum.y |  | 
						
							| 5 |  | cpmadugsum.t |  | 
						
							| 6 |  | cpmadugsum.x |  | 
						
							| 7 |  | cpmadugsum.e |  | 
						
							| 8 |  | cpmadugsum.m |  | 
						
							| 9 |  | cpmadugsum.r |  | 
						
							| 10 |  | cpmadugsum.1 |  | 
						
							| 11 |  | cpmadugsum.g |  | 
						
							| 12 |  | cpmadugsum.s |  | 
						
							| 13 |  | cpmadugsum.i |  | 
						
							| 14 |  | cpmadugsum.j |  | 
						
							| 15 |  | oveq2 |  | 
						
							| 16 | 13 | a1i |  | 
						
							| 17 | 16 | oveq1d |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 |  | crngring |  | 
						
							| 20 | 19 | anim2i |  | 
						
							| 21 | 20 | 3adant3 |  | 
						
							| 22 | 21 | ad2antrr |  | 
						
							| 23 | 3 4 | pmatring |  | 
						
							| 24 | 22 23 | syl |  | 
						
							| 25 | 3 4 | pmatlmod |  | 
						
							| 26 | 19 25 | sylan2 |  | 
						
							| 27 | 19 | adantl |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 | 6 3 28 | vr1cl |  | 
						
							| 30 | 27 29 | syl |  | 
						
							| 31 | 3 | ply1crng |  | 
						
							| 32 | 4 | matsca2 |  | 
						
							| 33 | 31 32 | sylan2 |  | 
						
							| 34 | 33 | fveq2d |  | 
						
							| 35 | 30 34 | eleqtrd |  | 
						
							| 36 | 19 23 | sylan2 |  | 
						
							| 37 | 18 10 | ringidcl |  | 
						
							| 38 | 36 37 | syl |  | 
						
							| 39 |  | eqid |  | 
						
							| 40 |  | eqid |  | 
						
							| 41 | 18 39 8 40 | lmodvscl |  | 
						
							| 42 | 26 35 38 41 | syl3anc |  | 
						
							| 43 | 42 | 3adant3 |  | 
						
							| 44 | 43 | ad2antrr |  | 
						
							| 45 | 5 1 2 3 4 | mat2pmatbas |  | 
						
							| 46 | 19 45 | syl3an2 |  | 
						
							| 47 | 46 | ad2antrr |  | 
						
							| 48 |  | ringcmn |  | 
						
							| 49 | 36 48 | syl |  | 
						
							| 50 | 49 | 3adant3 |  | 
						
							| 51 | 50 | ad2antrr |  | 
						
							| 52 |  | fzfid |  | 
						
							| 53 | 21 | ad3antrrr |  | 
						
							| 54 |  | elmapi |  | 
						
							| 55 |  | ffvelcdm |  | 
						
							| 56 | 55 | ex |  | 
						
							| 57 | 54 56 | syl |  | 
						
							| 58 | 57 | adantl |  | 
						
							| 59 | 58 | imp |  | 
						
							| 60 |  | elfznn0 |  | 
						
							| 61 | 60 | adantl |  | 
						
							| 62 | 1 2 5 3 4 18 8 7 6 | mat2pmatscmxcl |  | 
						
							| 63 | 53 59 61 62 | syl12anc |  | 
						
							| 64 | 63 | ralrimiva |  | 
						
							| 65 | 18 51 52 64 | gsummptcl |  | 
						
							| 66 | 18 9 12 24 44 47 65 | ringsubdir |  | 
						
							| 67 |  | oveq1 |  | 
						
							| 68 |  | 2fveq3 |  | 
						
							| 69 | 67 68 | oveq12d |  | 
						
							| 70 | 69 | cbvmptv |  | 
						
							| 71 | 70 | oveq2i |  | 
						
							| 72 | 71 | oveq2i |  | 
						
							| 73 | 71 | oveq2i |  | 
						
							| 74 | 72 73 | oveq12i |  | 
						
							| 75 | 1 2 3 4 5 6 7 8 9 10 11 12 | cpmadugsumlemF |  | 
						
							| 76 | 75 | anassrs |  | 
						
							| 77 | 74 76 | eqtrid |  | 
						
							| 78 | 17 66 77 | 3eqtrd |  | 
						
							| 79 | 15 78 | sylan9eqr |  | 
						
							| 80 | 4 14 18 | maduf |  | 
						
							| 81 | 31 80 | syl |  | 
						
							| 82 | 81 | 3ad2ant2 |  | 
						
							| 83 | 1 2 3 4 6 5 12 8 10 13 | chmatcl |  | 
						
							| 84 | 19 83 | syl3an2 |  | 
						
							| 85 | 82 84 | ffvelcdmd |  | 
						
							| 86 | 3 4 18 8 7 6 5 1 2 | pmatcollpw3fi1 |  | 
						
							| 87 | 85 86 | syld3an3 |  | 
						
							| 88 | 79 87 | reximddv2 |  |