Metamath Proof Explorer


Theorem cpmadugsumlemB

Description: Lemma B for cpmadugsum . (Contributed by AV, 2-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a A=NMatR
cpmadugsum.b B=BaseA
cpmadugsum.p P=Poly1R
cpmadugsum.y Y=NMatP
cpmadugsum.t T=NmatToPolyMatR
cpmadugsum.x X=var1R
cpmadugsum.e ×˙=mulGrpP
cpmadugsum.m ·˙=Y
cpmadugsum.r ×˙=Y
cpmadugsum.1 1˙=1Y
Assertion cpmadugsumlemB NFinRCRingMBs0bB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi=Yi=0si+1×˙X·˙Tbi

Proof

Step Hyp Ref Expression
1 cpmadugsum.a A=NMatR
2 cpmadugsum.b B=BaseA
3 cpmadugsum.p P=Poly1R
4 cpmadugsum.y Y=NMatP
5 cpmadugsum.t T=NmatToPolyMatR
6 cpmadugsum.x X=var1R
7 cpmadugsum.e ×˙=mulGrpP
8 cpmadugsum.m ·˙=Y
9 cpmadugsum.r ×˙=Y
10 cpmadugsum.1 1˙=1Y
11 crngring RCRingRRing
12 3 ply1ring RRingPRing
13 11 12 syl RCRingPRing
14 13 3ad2ant2 NFinRCRingMBPRing
15 eqid mulGrpP=mulGrpP
16 15 ringmgp PRingmulGrpPMnd
17 14 16 syl NFinRCRingMBmulGrpPMnd
18 17 ad2antrr NFinRCRingMBs0bB0si0smulGrpPMnd
19 elfznn0 i0si0
20 19 adantl NFinRCRingMBs0bB0si0si0
21 1nn0 10
22 21 a1i NFinRCRingMBs0bB0si0s10
23 11 3ad2ant2 NFinRCRingMBRRing
24 eqid BaseP=BaseP
25 6 3 24 vr1cl RRingXBaseP
26 23 25 syl NFinRCRingMBXBaseP
27 26 ad2antrr NFinRCRingMBs0bB0si0sXBaseP
28 15 24 mgpbas BaseP=BasemulGrpP
29 eqid P=P
30 15 29 mgpplusg P=+mulGrpP
31 28 7 30 mulgnn0dir mulGrpPMndi010XBasePi+1×˙X=i×˙XP1×˙X
32 18 20 22 27 31 syl13anc NFinRCRingMBs0bB0si0si+1×˙X=i×˙XP1×˙X
33 3 ply1crng RCRingPCRing
34 33 anim2i NFinRCRingNFinPCRing
35 34 3adant3 NFinRCRingMBNFinPCRing
36 4 matsca2 NFinPCRingP=ScalarY
37 35 36 syl NFinRCRingMBP=ScalarY
38 37 ad2antrr NFinRCRingMBs0bB0si0sP=ScalarY
39 38 fveq2d NFinRCRingMBs0bB0si0sP=ScalarY
40 eqidd NFinRCRingMBs0bB0si0si×˙X=i×˙X
41 28 7 mulg1 XBaseP1×˙X=X
42 26 41 syl NFinRCRingMB1×˙X=X
43 42 ad2antrr NFinRCRingMBs0bB0si0s1×˙X=X
44 39 40 43 oveq123d NFinRCRingMBs0bB0si0si×˙XP1×˙X=i×˙XScalarYX
45 32 44 eqtrd NFinRCRingMBs0bB0si0si+1×˙X=i×˙XScalarYX
46 13 anim2i NFinRCRingNFinPRing
47 46 3adant3 NFinRCRingMBNFinPRing
48 4 matring NFinPRingYRing
49 47 48 syl NFinRCRingMBYRing
50 49 ad2antrr NFinRCRingMBs0bB0si0sYRing
51 simpll1 NFinRCRingMBs0bB0si0sNFin
52 23 ad2antrr NFinRCRingMBs0bB0si0sRRing
53 simplrl NFinRCRingMBs0bB0si0ss0
54 simprr NFinRCRingMBs0bB0sbB0s
55 54 anim1i NFinRCRingMBs0bB0si0sbB0si0s
56 1 2 3 4 5 m2pmfzmap NFinRRings0bB0si0sTbiBaseY
57 51 52 53 55 56 syl31anc NFinRCRingMBs0bB0si0sTbiBaseY
58 eqid BaseY=BaseY
59 58 9 10 ringlidm YRingTbiBaseY1˙×˙Tbi=Tbi
60 50 57 59 syl2anc NFinRCRingMBs0bB0si0s1˙×˙Tbi=Tbi
61 60 eqcomd NFinRCRingMBs0bB0si0sTbi=1˙×˙Tbi
62 45 61 oveq12d NFinRCRingMBs0bB0si0si+1×˙X·˙Tbi=i×˙XScalarYX·˙1˙×˙Tbi
63 4 matassa NFinPCRingYAssAlg
64 34 63 syl NFinRCRingYAssAlg
65 64 3adant3 NFinRCRingMBYAssAlg
66 65 ad2antrr NFinRCRingMBs0bB0si0sYAssAlg
67 37 eqcomd NFinRCRingMBScalarY=P
68 67 fveq2d NFinRCRingMBBaseScalarY=BaseP
69 26 68 eleqtrrd NFinRCRingMBXBaseScalarY
70 69 ad2antrr NFinRCRingMBs0bB0si0sXBaseScalarY
71 28 7 18 20 27 mulgnn0cld NFinRCRingMBs0bB0si0si×˙XBaseP
72 68 ad2antrr NFinRCRingMBs0bB0si0sBaseScalarY=BaseP
73 71 72 eleqtrrd NFinRCRingMBs0bB0si0si×˙XBaseScalarY
74 46 48 syl NFinRCRingYRing
75 74 3adant3 NFinRCRingMBYRing
76 58 10 ringidcl YRing1˙BaseY
77 75 76 syl NFinRCRingMB1˙BaseY
78 77 ad2antrr NFinRCRingMBs0bB0si0s1˙BaseY
79 eqid ScalarY=ScalarY
80 eqid BaseScalarY=BaseScalarY
81 eqid ScalarY=ScalarY
82 58 79 80 81 8 9 assa2ass YAssAlgXBaseScalarYi×˙XBaseScalarY1˙BaseYTbiBaseYX·˙1˙×˙i×˙X·˙Tbi=i×˙XScalarYX·˙1˙×˙Tbi
83 66 70 73 78 57 82 syl122anc NFinRCRingMBs0bB0si0sX·˙1˙×˙i×˙X·˙Tbi=i×˙XScalarYX·˙1˙×˙Tbi
84 83 eqcomd NFinRCRingMBs0bB0si0si×˙XScalarYX·˙1˙×˙Tbi=X·˙1˙×˙i×˙X·˙Tbi
85 62 84 eqtrd NFinRCRingMBs0bB0si0si+1×˙X·˙Tbi=X·˙1˙×˙i×˙X·˙Tbi
86 85 mpteq2dva NFinRCRingMBs0bB0si0si+1×˙X·˙Tbi=i0sX·˙1˙×˙i×˙X·˙Tbi
87 86 oveq2d NFinRCRingMBs0bB0sYi=0si+1×˙X·˙Tbi=Yi=0sX·˙1˙×˙i×˙X·˙Tbi
88 eqid 0Y=0Y
89 75 adantr NFinRCRingMBs0bB0sYRing
90 ovexd NFinRCRingMBs0bB0s0sV
91 4 matlmod NFinPRingYLMod
92 46 91 syl NFinRCRingYLMod
93 92 3adant3 NFinRCRingMBYLMod
94 11 adantl NFinRCRingRRing
95 94 25 syl NFinRCRingXBaseP
96 34 36 syl NFinRCRingP=ScalarY
97 96 eqcomd NFinRCRingScalarY=P
98 97 fveq2d NFinRCRingBaseScalarY=BaseP
99 95 98 eleqtrrd NFinRCRingXBaseScalarY
100 99 3adant3 NFinRCRingMBXBaseScalarY
101 49 76 syl NFinRCRingMB1˙BaseY
102 58 79 8 80 lmodvscl YLModXBaseScalarY1˙BaseYX·˙1˙BaseY
103 93 100 101 102 syl3anc NFinRCRingMBX·˙1˙BaseY
104 103 adantr NFinRCRingMBs0bB0sX·˙1˙BaseY
105 93 ad2antrr NFinRCRingMBs0bB0si0sYLMod
106 36 eqcomd NFinPCRingScalarY=P
107 106 fveq2d NFinPCRingBaseScalarY=BaseP
108 35 107 syl NFinRCRingMBBaseScalarY=BaseP
109 108 eleq2d NFinRCRingMBi×˙XBaseScalarYi×˙XBaseP
110 109 ad2antrr NFinRCRingMBs0bB0si0si×˙XBaseScalarYi×˙XBaseP
111 71 110 mpbird NFinRCRingMBs0bB0si0si×˙XBaseScalarY
112 58 79 8 80 lmodvscl YLModi×˙XBaseScalarYTbiBaseYi×˙X·˙TbiBaseY
113 105 111 57 112 syl3anc NFinRCRingMBs0bB0si0si×˙X·˙TbiBaseY
114 simpl1 NFinRCRingMBs0bB0sNFin
115 23 adantr NFinRCRingMBs0bB0sRRing
116 simprl NFinRCRingMBs0bB0ss0
117 eqid i0si×˙X·˙Tbi=i0si×˙X·˙Tbi
118 fzfid NFinRRings0bB0s0sFin
119 ovexd NFinRRings0bB0si0si×˙X·˙TbiV
120 fvexd NFinRRings0bB0s0YV
121 117 118 119 120 fsuppmptdm NFinRRings0bB0sfinSupp0Yi0si×˙X·˙Tbi
122 114 115 116 54 121 syl31anc NFinRCRingMBs0bB0sfinSupp0Yi0si×˙X·˙Tbi
123 58 88 9 89 90 104 113 122 gsummulc2 NFinRCRingMBs0bB0sYi=0sX·˙1˙×˙i×˙X·˙Tbi=X·˙1˙×˙Yi=0si×˙X·˙Tbi
124 87 123 eqtr2d NFinRCRingMBs0bB0sX·˙1˙×˙Yi=0si×˙X·˙Tbi=Yi=0si+1×˙X·˙Tbi