| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmadugsum.a |
|
| 2 |
|
cpmadugsum.b |
|
| 3 |
|
cpmadugsum.p |
|
| 4 |
|
cpmadugsum.y |
|
| 5 |
|
cpmadugsum.t |
|
| 6 |
|
cpmadugsum.x |
|
| 7 |
|
cpmadugsum.e |
|
| 8 |
|
cpmadugsum.m |
|
| 9 |
|
cpmadugsum.r |
|
| 10 |
|
cpmadugsum.1 |
|
| 11 |
|
crngring |
|
| 12 |
3
|
ply1ring |
|
| 13 |
11 12
|
syl |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
|
eqid |
|
| 16 |
15
|
ringmgp |
|
| 17 |
14 16
|
syl |
|
| 18 |
17
|
ad2antrr |
|
| 19 |
|
elfznn0 |
|
| 20 |
19
|
adantl |
|
| 21 |
|
1nn0 |
|
| 22 |
21
|
a1i |
|
| 23 |
11
|
3ad2ant2 |
|
| 24 |
|
eqid |
|
| 25 |
6 3 24
|
vr1cl |
|
| 26 |
23 25
|
syl |
|
| 27 |
26
|
ad2antrr |
|
| 28 |
15 24
|
mgpbas |
|
| 29 |
|
eqid |
|
| 30 |
15 29
|
mgpplusg |
|
| 31 |
28 7 30
|
mulgnn0dir |
|
| 32 |
18 20 22 27 31
|
syl13anc |
|
| 33 |
3
|
ply1crng |
|
| 34 |
33
|
anim2i |
|
| 35 |
34
|
3adant3 |
|
| 36 |
4
|
matsca2 |
|
| 37 |
35 36
|
syl |
|
| 38 |
37
|
ad2antrr |
|
| 39 |
38
|
fveq2d |
|
| 40 |
|
eqidd |
|
| 41 |
28 7
|
mulg1 |
|
| 42 |
26 41
|
syl |
|
| 43 |
42
|
ad2antrr |
|
| 44 |
39 40 43
|
oveq123d |
|
| 45 |
32 44
|
eqtrd |
|
| 46 |
13
|
anim2i |
|
| 47 |
46
|
3adant3 |
|
| 48 |
4
|
matring |
|
| 49 |
47 48
|
syl |
|
| 50 |
49
|
ad2antrr |
|
| 51 |
|
simpll1 |
|
| 52 |
23
|
ad2antrr |
|
| 53 |
|
simplrl |
|
| 54 |
|
simprr |
|
| 55 |
54
|
anim1i |
|
| 56 |
1 2 3 4 5
|
m2pmfzmap |
|
| 57 |
51 52 53 55 56
|
syl31anc |
|
| 58 |
|
eqid |
|
| 59 |
58 9 10
|
ringlidm |
|
| 60 |
50 57 59
|
syl2anc |
|
| 61 |
60
|
eqcomd |
|
| 62 |
45 61
|
oveq12d |
|
| 63 |
4
|
matassa |
|
| 64 |
34 63
|
syl |
|
| 65 |
64
|
3adant3 |
|
| 66 |
65
|
ad2antrr |
|
| 67 |
37
|
eqcomd |
|
| 68 |
67
|
fveq2d |
|
| 69 |
26 68
|
eleqtrrd |
|
| 70 |
69
|
ad2antrr |
|
| 71 |
28 7 18 20 27
|
mulgnn0cld |
|
| 72 |
68
|
ad2antrr |
|
| 73 |
71 72
|
eleqtrrd |
|
| 74 |
46 48
|
syl |
|
| 75 |
74
|
3adant3 |
|
| 76 |
58 10
|
ringidcl |
|
| 77 |
75 76
|
syl |
|
| 78 |
77
|
ad2antrr |
|
| 79 |
|
eqid |
|
| 80 |
|
eqid |
|
| 81 |
|
eqid |
|
| 82 |
58 79 80 81 8 9
|
assa2ass |
|
| 83 |
66 70 73 78 57 82
|
syl122anc |
|
| 84 |
83
|
eqcomd |
|
| 85 |
62 84
|
eqtrd |
|
| 86 |
85
|
mpteq2dva |
|
| 87 |
86
|
oveq2d |
|
| 88 |
|
eqid |
|
| 89 |
75
|
adantr |
|
| 90 |
|
ovexd |
|
| 91 |
4
|
matlmod |
|
| 92 |
46 91
|
syl |
|
| 93 |
92
|
3adant3 |
|
| 94 |
11
|
adantl |
|
| 95 |
94 25
|
syl |
|
| 96 |
34 36
|
syl |
|
| 97 |
96
|
eqcomd |
|
| 98 |
97
|
fveq2d |
|
| 99 |
95 98
|
eleqtrrd |
|
| 100 |
99
|
3adant3 |
|
| 101 |
49 76
|
syl |
|
| 102 |
58 79 8 80
|
lmodvscl |
|
| 103 |
93 100 101 102
|
syl3anc |
|
| 104 |
103
|
adantr |
|
| 105 |
93
|
ad2antrr |
|
| 106 |
36
|
eqcomd |
|
| 107 |
106
|
fveq2d |
|
| 108 |
35 107
|
syl |
|
| 109 |
108
|
eleq2d |
|
| 110 |
109
|
ad2antrr |
|
| 111 |
71 110
|
mpbird |
|
| 112 |
58 79 8 80
|
lmodvscl |
|
| 113 |
105 111 57 112
|
syl3anc |
|
| 114 |
|
simpl1 |
|
| 115 |
23
|
adantr |
|
| 116 |
|
simprl |
|
| 117 |
|
eqid |
|
| 118 |
|
fzfid |
|
| 119 |
|
ovexd |
|
| 120 |
|
fvexd |
|
| 121 |
117 118 119 120
|
fsuppmptdm |
|
| 122 |
114 115 116 54 121
|
syl31anc |
|
| 123 |
58 88 9 89 90 104 113 122
|
gsummulc2 |
|
| 124 |
87 123
|
eqtr2d |
|