Metamath Proof Explorer


Theorem dfgcd2

Description: Alternate definition of the gcd operator, see definition in ApostolNT p. 15. (Contributed by AV, 8-Aug-2021)

Ref Expression
Assertion dfgcd2 MND=MgcdN0DDMDNeeMeNeD

Proof

Step Hyp Ref Expression
1 gcdcl MNMgcdN0
2 1 nn0ge0d MN0MgcdN
3 gcddvds MNMgcdNMMgcdNN
4 3anass eMNeMN
5 4 biancomi eMNMNe
6 dvdsgcd eMNeMeNeMgcdN
7 5 6 sylbir MNeeMeNeMgcdN
8 7 ralrimiva MNeeMeNeMgcdN
9 2 3 8 3jca MN0MgcdNMgcdNMMgcdNNeeMeNeMgcdN
10 9 adantr MND=MgcdN0MgcdNMgcdNMMgcdNNeeMeNeMgcdN
11 breq2 D=MgcdN0D0MgcdN
12 breq1 D=MgcdNDMMgcdNM
13 breq1 D=MgcdNDNMgcdNN
14 12 13 anbi12d D=MgcdNDMDNMgcdNMMgcdNN
15 breq2 D=MgcdNeDeMgcdN
16 15 imbi2d D=MgcdNeMeNeDeMeNeMgcdN
17 16 ralbidv D=MgcdNeeMeNeDeeMeNeMgcdN
18 11 14 17 3anbi123d D=MgcdN0DDMDNeeMeNeD0MgcdNMgcdNMMgcdNNeeMeNeMgcdN
19 18 adantl MND=MgcdN0DDMDNeeMeNeD0MgcdNMgcdNMMgcdNNeeMeNeMgcdN
20 10 19 mpbird MND=MgcdN0DDMDNeeMeNeD
21 gcdval MNMgcdN=ifM=0N=00supn|nMnN<
22 21 adantr MN0DDMDNeeMeNeDMgcdN=ifM=0N=00supn|nMnN<
23 iftrue M=0N=0ifM=0N=00supn|nMnN<=0
24 23 adantr M=0N=0MN0DDMDNeeMeNeDifM=0N=00supn|nMnN<=0
25 breq2 M=0DMD0
26 breq2 N=0DND0
27 25 26 bi2anan9 M=0N=0DMDND0D0
28 breq2 M=0eMe0
29 breq2 N=0eNe0
30 28 29 bi2anan9 M=0N=0eMeNe0e0
31 30 imbi1d M=0N=0eMeNeDe0e0eD
32 31 ralbidv M=0N=0eeMeNeDee0e0eD
33 27 32 3anbi23d M=0N=00DDMDNeeMeNeD0DD0D0ee0e0eD
34 dvdszrcl D0D0
35 dvds0 ee0
36 35 35 jca ee0e0
37 36 adantl D0Dee0e0
38 pm5.5 e0e0e0e0eDeD
39 37 38 syl D0Dee0e0eDeD
40 39 ralbidva D0Dee0e0eDeeD
41 0z 0
42 breq1 e=0eD0D
43 42 rspcv 0eeD0D
44 41 43 ax-mp eeD0D
45 0dvds D0DD=0
46 45 biimpd D0DD=0
47 eqcom 0=DD=0
48 46 47 syl6ibr D0D0=D
49 44 48 syl5 DeeD0=D
50 49 adantr D0DeeD0=D
51 40 50 sylbid D0Dee0e0eD0=D
52 51 ex D0Dee0e0eD0=D
53 52 adantr D00Dee0e0eD0=D
54 34 53 syl D00Dee0e0eD0=D
55 54 adantr D0D00Dee0e0eD0=D
56 55 3imp21 0DD0D0ee0e0eD0=D
57 33 56 syl6bi M=0N=00DDMDNeeMeNeD0=D
58 57 adantld M=0N=0MN0DDMDNeeMeNeD0=D
59 58 imp M=0N=0MN0DDMDNeeMeNeD0=D
60 24 59 eqtrd M=0N=0MN0DDMDNeeMeNeDifM=0N=00supn|nMnN<=D
61 iffalse ¬M=0N=0ifM=0N=00supn|nMnN<=supn|nMnN<
62 61 adantr ¬M=0N=0MN0DDMDNeeMeNeDifM=0N=00supn|nMnN<=supn|nMnN<
63 ltso <Or
64 63 a1i ¬M=0N=0MN0DDMDNeeMeNeD<Or
65 dvdszrcl DMDM
66 65 simpld DMD
67 66 zred DMD
68 67 adantr DMDND
69 68 3ad2ant2 0DDMDNeeMeNeDD
70 69 ad2antll ¬M=0N=0MN0DDMDNeeMeNeDD
71 breq1 n=ynMyM
72 breq1 n=ynNyN
73 71 72 anbi12d n=ynMnNyMyN
74 73 elrab yn|nMnNyyMyN
75 breq1 e=yeMyM
76 breq1 e=yeNyN
77 75 76 anbi12d e=yeMeNyMyN
78 breq1 e=yeDyD
79 77 78 imbi12d e=yeMeNeDyMyNyD
80 79 rspcv yeeMeNeDyMyNyD
81 80 com23 yyMyNeeMeNeDyD
82 81 imp yyMyNeeMeNeDyD
83 82 ad2antrr yyMyN¬M=0N=0MNeeMeNeDyD
84 elnn0z D0D0D
85 84 simplbi2 D0DD0
86 85 adantr DM0DD0
87 65 86 syl DM0DD0
88 87 adantr DMDN0DD0
89 88 impcom 0DDMDND0
90 simp-4l yyMyN¬M=0N=0D00DDMDNy
91 elnn0 D0DD=0
92 2a1 DyyMyN¬M=0N=00DDMDND
93 breq1 D=0DM0M
94 breq1 D=0DN0N
95 93 94 anbi12d D=0DMDN0M0N
96 95 anbi2d D=00DDMDN0D0M0N
97 96 adantr D=0yyMyN¬M=0N=00DDMDN0D0M0N
98 ianor ¬M=0N=0¬M=0¬N=0
99 dvdszrcl 0M0M
100 0dvds M0MM=0
101 pm2.24 M=0¬M=0D
102 100 101 syl6bi M0M¬M=0D
103 102 adantl 0M0M¬M=0D
104 99 103 mpcom 0M¬M=0D
105 104 adantr 0M0N¬M=0D
106 105 com12 ¬M=00M0ND
107 dvdszrcl 0N0N
108 0dvds N0NN=0
109 pm2.24 N=0¬N=0D
110 108 109 syl6bi N0N¬N=0D
111 110 adantl 0N0N¬N=0D
112 107 111 mpcom 0N¬N=0D
113 112 adantl 0M0N¬N=0D
114 113 com12 ¬N=00M0ND
115 106 114 jaoi ¬M=0¬N=00M0ND
116 98 115 sylbi ¬M=0N=00M0ND
117 116 adantld ¬M=0N=00D0M0ND
118 117 ad2antll D=0yyMyN¬M=0N=00D0M0ND
119 97 118 sylbid D=0yyMyN¬M=0N=00DDMDND
120 119 ex D=0yyMyN¬M=0N=00DDMDND
121 92 120 jaoi DD=0yyMyN¬M=0N=00DDMDND
122 91 121 sylbi D0yyMyN¬M=0N=00DDMDND
123 122 impcom yyMyN¬M=0N=0D00DDMDND
124 123 imp yyMyN¬M=0N=0D00DDMDND
125 dvdsle yDyDyD
126 90 124 125 syl2anc yyMyN¬M=0N=0D00DDMDNyDyD
127 126 exp31 yyMyN¬M=0N=0D00DDMDNyDyD
128 127 com14 yDD00DDMDNyyMyN¬M=0N=0yD
129 128 imp yDD00DDMDNyyMyN¬M=0N=0yD
130 129 impcom 0DDMDNyDD0yyMyN¬M=0N=0yD
131 130 imp 0DDMDNyDD0yyMyN¬M=0N=0yD
132 zre yy
133 132 ad2antrr yyMyN¬M=0N=0y
134 68 ad2antlr 0DDMDNyDD0D
135 lenlt yDyD¬D<y
136 133 134 135 syl2anr 0DDMDNyDD0yyMyN¬M=0N=0yD¬D<y
137 131 136 mpbid 0DDMDNyDD0yyMyN¬M=0N=0¬D<y
138 137 exp31 0DDMDNyDD0yyMyN¬M=0N=0¬D<y
139 89 138 mpan2d 0DDMDNyDyyMyN¬M=0N=0¬D<y
140 139 com13 yyMyN¬M=0N=0yD0DDMDN¬D<y
141 140 adantr yyMyN¬M=0N=0MNyD0DDMDN¬D<y
142 83 141 syld yyMyN¬M=0N=0MNeeMeNeD0DDMDN¬D<y
143 142 com13 0DDMDNeeMeNeDyyMyN¬M=0N=0MN¬D<y
144 143 3impia 0DDMDNeeMeNeDyyMyN¬M=0N=0MN¬D<y
145 144 com12 yyMyN¬M=0N=0MN0DDMDNeeMeNeD¬D<y
146 145 expimpd yyMyN¬M=0N=0MN0DDMDNeeMeNeD¬D<y
147 146 expimpd yyMyN¬M=0N=0MN0DDMDNeeMeNeD¬D<y
148 74 147 sylbi yn|nMnN¬M=0N=0MN0DDMDNeeMeNeD¬D<y
149 148 impcom ¬M=0N=0MN0DDMDNeeMeNeDyn|nMnN¬D<y
150 66 adantr DMDND
151 150 ancri DMDNDDMDN
152 151 3ad2ant2 0DDMDNeeMeNeDDDMDN
153 152 ad2antll ¬M=0N=0MN0DDMDNeeMeNeDDDMDN
154 153 adantr ¬M=0N=0MN0DDMDNeeMeNeDyy<DDDMDN
155 breq1 n=DnMDM
156 breq1 n=DnNDN
157 155 156 anbi12d n=DnMnNDMDN
158 157 elrab Dn|nMnNDDMDN
159 154 158 sylibr ¬M=0N=0MN0DDMDNeeMeNeDyy<DDn|nMnN
160 breq2 z=Dy<zy<D
161 160 adantl ¬M=0N=0MN0DDMDNeeMeNeDyy<Dz=Dy<zy<D
162 simprr ¬M=0N=0MN0DDMDNeeMeNeDyy<Dy<D
163 159 161 162 rspcedvd ¬M=0N=0MN0DDMDNeeMeNeDyy<Dzn|nMnNy<z
164 64 70 149 163 eqsupd ¬M=0N=0MN0DDMDNeeMeNeDsupn|nMnN<=D
165 62 164 eqtrd ¬M=0N=0MN0DDMDNeeMeNeDifM=0N=00supn|nMnN<=D
166 60 165 pm2.61ian MN0DDMDNeeMeNeDifM=0N=00supn|nMnN<=D
167 22 166 eqtr2d MN0DDMDNeeMeNeDD=MgcdN
168 20 167 impbida MND=MgcdN0DDMDNeeMeNeD