Metamath Proof Explorer


Theorem dvcxp1

Description: The derivative of a complex power with respect to the first argument. (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion dvcxp1 Adx+xAdx=x+AxA1

Proof

Step Hyp Ref Expression
1 reelprrecn
2 1 a1i A
3 relogcl x+logx
4 3 adantl Ax+logx
5 rpreccl x+1x+
6 5 adantl Ax+1x+
7 recn yy
8 mulcl AyAy
9 efcl AyeAy
10 8 9 syl AyeAy
11 7 10 sylan2 AyeAy
12 ovexd AyeAyAV
13 relogf1o log+:+1-1 onto
14 f1of log+:+1-1 ontolog+:+
15 13 14 mp1i Alog+:+
16 15 feqmptd Alog+=x+log+x
17 fvres x+log+x=logx
18 17 mpteq2ia x+log+x=x+logx
19 16 18 eqtrdi Alog+=x+logx
20 19 oveq2d ADlog+=dx+logxdx
21 dvrelog Dlog+=x+1x
22 20 21 eqtr3di Adx+logxdx=x+1x
23 eqid TopOpenfld=TopOpenfld
24 23 cnfldtopon TopOpenfldTopOn
25 toponmax TopOpenfldTopOnTopOpenfld
26 24 25 mp1i ATopOpenfld
27 ax-resscn
28 27 a1i A
29 df-ss =
30 28 29 sylib A=
31 ovexd AyeAyAV
32 cnelprrecn
33 32 a1i A
34 simpl AyA
35 efcl xex
36 35 adantl Axex
37 simpr Ayy
38 1cnd Ay1
39 33 dvmptid Adyydy=y1
40 id AA
41 33 37 38 39 40 dvmptcmul AdyAydy=yA1
42 mulrid AA1=A
43 42 mpteq2dv AyA1=yA
44 41 43 eqtrd AdyAydy=yA
45 dvef Dexp=exp
46 eff exp:
47 46 a1i Aexp:
48 47 feqmptd Aexp=xex
49 48 eqcomd Axex=exp
50 49 oveq2d Adxexdx=Dexp
51 45 50 49 3eqtr4a Adxexdx=xex
52 fveq2 x=Ayex=eAy
53 33 33 8 34 36 36 44 51 52 52 dvmptco AdyeAydy=yeAyA
54 23 2 26 30 10 31 53 dvmptres3 AdyeAydy=yeAyA
55 oveq2 y=logxAy=Alogx
56 55 fveq2d y=logxeAy=eAlogx
57 56 oveq1d y=logxeAyA=eAlogxA
58 2 2 4 6 11 12 22 54 56 57 dvmptco Adx+eAlogxdx=x+eAlogxA1x
59 rpcn x+x
60 59 adantl Ax+x
61 rpne0 x+x0
62 61 adantl Ax+x0
63 simpl Ax+A
64 60 62 63 cxpefd Ax+xA=eAlogx
65 64 mpteq2dva Ax+xA=x+eAlogx
66 65 oveq2d Adx+xAdx=dx+eAlogxdx
67 1cnd Ax+1
68 60 62 63 67 cxpsubd Ax+xA1=xAx1
69 60 cxp1d Ax+x1=x
70 69 oveq2d Ax+xAx1=xAx
71 60 63 cxpcld Ax+xA
72 71 60 62 divrecd Ax+xAx=xA1x
73 68 70 72 3eqtrd Ax+xA1=xA1x
74 73 oveq2d Ax+AxA1=AxA1x
75 6 rpcnd Ax+1x
76 63 71 75 mul12d Ax+AxA1x=xAA1x
77 71 63 75 mulassd Ax+xAA1x=xAA1x
78 76 77 eqtr4d Ax+AxA1x=xAA1x
79 64 oveq1d Ax+xAA=eAlogxA
80 79 oveq1d Ax+xAA1x=eAlogxA1x
81 74 78 80 3eqtrd Ax+AxA1=eAlogxA1x
82 81 mpteq2dva Ax+AxA1=x+eAlogxA1x
83 58 66 82 3eqtr4d Adx+xAdx=x+AxA1