Metamath Proof Explorer


Theorem dvloglem

Description: Lemma for dvlog . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypothesis logcn.d D=−∞0
Assertion dvloglem logDTopOpenfld

Proof

Step Hyp Ref Expression
1 logcn.d D=−∞0
2 logf1o log:01-1 ontoranlog
3 f1ofun log:01-1 ontoranlogFunlog
4 2 3 ax-mp Funlog
5 1 logdmss D0
6 f1odm log:01-1 ontoranlogdomlog=0
7 2 6 ax-mp domlog=0
8 5 7 sseqtrri Ddomlog
9 funimass4 FunlogDdomloglogD-1ππxDlogx-1ππ
10 4 8 9 mp2an logD-1ππxDlogx-1ππ
11 1 ellogdm xDxxx+
12 11 simplbi xDx
13 1 logdmn0 xDx0
14 12 13 logcld xDlogx
15 14 imcld xDlogx
16 12 13 logimcld xDπ<logxlogxπ
17 16 simpld xDπ<logx
18 pire π
19 18 a1i xDπ
20 16 simprd xDlogxπ
21 1 logdmnrp xD¬x+
22 lognegb xx0x+logx=π
23 12 13 22 syl2anc xDx+logx=π
24 23 necon3bbid xD¬x+logxπ
25 21 24 mpbid xDlogxπ
26 25 necomd xDπlogx
27 15 19 20 26 leneltd xDlogx<π
28 18 renegcli π
29 28 rexri π*
30 18 rexri π*
31 elioo2 π*π*logxππlogxπ<logxlogx<π
32 29 30 31 mp2an logxππlogxπ<logxlogx<π
33 15 17 27 32 syl3anbrc xDlogxππ
34 imf :
35 ffn :Fn
36 elpreima Fnlogx-1ππlogxlogxππ
37 34 35 36 mp2b logx-1ππlogxlogxππ
38 14 33 37 sylanbrc xDlogx-1ππ
39 10 38 mprgbir logD-1ππ
40 df-ioo .=x*,y*z*|x<zz<y
41 df-ioc .=x*,y*z*|x<zzy
42 idd π*w*π<wπ<w
43 xrltle w*π*w<πwπ
44 40 41 42 43 ixxssixx ππππ
45 imass2 ππππ-1ππ-1ππ
46 44 45 ax-mp -1ππ-1ππ
47 logrn ranlog=-1ππ
48 46 47 sseqtrri -1ππranlog
49 48 sseli x-1ππxranlog
50 logef xranloglogex=x
51 49 50 syl x-1ππlogex=x
52 elpreima Fnx-1ππxxππ
53 34 35 52 mp2b x-1ππxxππ
54 efcl xex
55 54 adantr xxππex
56 53 55 sylbi x-1ππex
57 53 simplbi x-1ππx
58 57 imcld x-1ππx
59 eliooord xπππ<xx<π
60 53 59 simplbiim x-1πππ<xx<π
61 60 simprd x-1ππx<π
62 58 61 ltned x-1ππxπ
63 51 adantr x-1ππex−∞0logex=x
64 63 fveq2d x-1ππex−∞0logex=x
65 simpr x-1ππex−∞0ex−∞0
66 mnfxr −∞*
67 0re 0
68 elioc2 −∞*0ex−∞0ex−∞<exex0
69 66 67 68 mp2an ex−∞0ex−∞<exex0
70 65 69 sylib x-1ππex−∞0ex−∞<exex0
71 70 simp1d x-1ππex−∞0ex
72 0red x-1ππex−∞00
73 70 simp3d x-1ππex−∞0ex0
74 efne0 xex0
75 57 74 syl x-1ππex0
76 75 adantr x-1ππex−∞0ex0
77 76 necomd x-1ππex−∞00ex
78 71 72 73 77 leneltd x-1ππex−∞0ex<0
79 71 78 negelrpd x-1ππex−∞0ex+
80 lognegb exex0ex+logex=π
81 56 75 80 syl2anc x-1ππex+logex=π
82 81 adantr x-1ππex−∞0ex+logex=π
83 79 82 mpbid x-1ππex−∞0logex=π
84 64 83 eqtr3d x-1ππex−∞0x=π
85 84 ex x-1ππex−∞0x=π
86 85 necon3ad x-1ππxπ¬ex−∞0
87 62 86 mpd x-1ππ¬ex−∞0
88 56 87 eldifd x-1ππex−∞0
89 88 1 eleqtrrdi x-1ππexD
90 funfvima2 FunlogDdomlogexDlogexlogD
91 4 8 90 mp2an exDlogexlogD
92 89 91 syl x-1ππlogexlogD
93 51 92 eqeltrrd x-1ππxlogD
94 93 ssriv -1ππlogD
95 39 94 eqssi logD=-1ππ
96 imcncf :cn
97 ssid
98 ax-resscn
99 eqid TopOpenfld=TopOpenfld
100 99 cnfldtopon TopOpenfldTopOn
101 100 toponrestid TopOpenfld=TopOpenfld𝑡
102 99 tgioo2 topGenran.=TopOpenfld𝑡
103 99 101 102 cncfcn cn=TopOpenfldCntopGenran.
104 97 98 103 mp2an cn=TopOpenfldCntopGenran.
105 96 104 eleqtri TopOpenfldCntopGenran.
106 iooretop ππtopGenran.
107 cnima TopOpenfldCntopGenran.ππtopGenran.-1ππTopOpenfld
108 105 106 107 mp2an -1ππTopOpenfld
109 95 108 eqeltri logDTopOpenfld