Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
The natural logarithm on complex numbers
dvloglem
Next ⟩
logdmopn
Metamath Proof Explorer
Ascii
Unicode
Theorem
dvloglem
Description:
Lemma for
dvlog
.
(Contributed by
Mario Carneiro
, 24-Feb-2015)
Ref
Expression
Hypothesis
logcn.d
⊢
D
=
ℂ
∖
−∞
0
Assertion
dvloglem
⊢
log
D
∈
TopOpen
ℂ
fld
Proof
Step
Hyp
Ref
Expression
1
logcn.d
⊢
D
=
ℂ
∖
−∞
0
2
logf1o
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
3
f1ofun
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
→
Fun
log
4
2
3
ax-mp
⊢
Fun
log
5
1
logdmss
⊢
D
⊆
ℂ
∖
0
6
f1odm
⊢
log
:
ℂ
∖
0
⟶
1-1 onto
ran
log
→
dom
log
=
ℂ
∖
0
7
2
6
ax-mp
⊢
dom
log
=
ℂ
∖
0
8
5
7
sseqtrri
⊢
D
⊆
dom
log
9
funimass4
π
π
π
π
⊢
Fun
log
∧
D
⊆
dom
log
→
log
D
⊆
ℑ
-1
−
π
π
↔
∀
x
∈
D
log
x
∈
ℑ
-1
−
π
π
10
4
8
9
mp2an
π
π
π
π
⊢
log
D
⊆
ℑ
-1
−
π
π
↔
∀
x
∈
D
log
x
∈
ℑ
-1
−
π
π
11
1
ellogdm
⊢
x
∈
D
↔
x
∈
ℂ
∧
x
∈
ℝ
→
x
∈
ℝ
+
12
11
simplbi
⊢
x
∈
D
→
x
∈
ℂ
13
1
logdmn0
⊢
x
∈
D
→
x
≠
0
14
12
13
logcld
⊢
x
∈
D
→
log
x
∈
ℂ
15
14
imcld
⊢
x
∈
D
→
ℑ
log
x
∈
ℝ
16
12
13
logimcld
π
π
⊢
x
∈
D
→
−
π
<
ℑ
log
x
∧
ℑ
log
x
≤
π
17
16
simpld
π
⊢
x
∈
D
→
−
π
<
ℑ
log
x
18
pire
π
⊢
π
∈
ℝ
19
18
a1i
π
⊢
x
∈
D
→
π
∈
ℝ
20
16
simprd
π
⊢
x
∈
D
→
ℑ
log
x
≤
π
21
1
logdmnrp
⊢
x
∈
D
→
¬
−
x
∈
ℝ
+
22
lognegb
π
⊢
x
∈
ℂ
∧
x
≠
0
→
−
x
∈
ℝ
+
↔
ℑ
log
x
=
π
23
12
13
22
syl2anc
π
⊢
x
∈
D
→
−
x
∈
ℝ
+
↔
ℑ
log
x
=
π
24
23
necon3bbid
π
⊢
x
∈
D
→
¬
−
x
∈
ℝ
+
↔
ℑ
log
x
≠
π
25
21
24
mpbid
π
⊢
x
∈
D
→
ℑ
log
x
≠
π
26
25
necomd
π
⊢
x
∈
D
→
π
≠
ℑ
log
x
27
15
19
20
26
leneltd
π
⊢
x
∈
D
→
ℑ
log
x
<
π
28
18
renegcli
π
⊢
−
π
∈
ℝ
29
28
rexri
π
⊢
−
π
∈
ℝ
*
30
18
rexri
π
⊢
π
∈
ℝ
*
31
elioo2
π
π
π
π
π
π
⊢
−
π
∈
ℝ
*
∧
π
∈
ℝ
*
→
ℑ
log
x
∈
−
π
π
↔
ℑ
log
x
∈
ℝ
∧
−
π
<
ℑ
log
x
∧
ℑ
log
x
<
π
32
29
30
31
mp2an
π
π
π
π
⊢
ℑ
log
x
∈
−
π
π
↔
ℑ
log
x
∈
ℝ
∧
−
π
<
ℑ
log
x
∧
ℑ
log
x
<
π
33
15
17
27
32
syl3anbrc
π
π
⊢
x
∈
D
→
ℑ
log
x
∈
−
π
π
34
imf
⊢
ℑ
:
ℂ
⟶
ℝ
35
ffn
⊢
ℑ
:
ℂ
⟶
ℝ
→
ℑ
Fn
ℂ
36
elpreima
π
π
π
π
⊢
ℑ
Fn
ℂ
→
log
x
∈
ℑ
-1
−
π
π
↔
log
x
∈
ℂ
∧
ℑ
log
x
∈
−
π
π
37
34
35
36
mp2b
π
π
π
π
⊢
log
x
∈
ℑ
-1
−
π
π
↔
log
x
∈
ℂ
∧
ℑ
log
x
∈
−
π
π
38
14
33
37
sylanbrc
π
π
⊢
x
∈
D
→
log
x
∈
ℑ
-1
−
π
π
39
10
38
mprgbir
π
π
⊢
log
D
⊆
ℑ
-1
−
π
π
40
df-ioo
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
<
z
∧
z
<
y
41
df-ioc
⊢
.
=
x
∈
ℝ
*
,
y
∈
ℝ
*
⟼
z
∈
ℝ
*
|
x
<
z
∧
z
≤
y
42
idd
π
π
π
⊢
−
π
∈
ℝ
*
∧
w
∈
ℝ
*
→
−
π
<
w
→
−
π
<
w
43
xrltle
π
π
π
⊢
w
∈
ℝ
*
∧
π
∈
ℝ
*
→
w
<
π
→
w
≤
π
44
40
41
42
43
ixxssixx
π
π
π
π
⊢
−
π
π
⊆
−
π
π
45
imass2
π
π
π
π
π
π
π
π
⊢
−
π
π
⊆
−
π
π
→
ℑ
-1
−
π
π
⊆
ℑ
-1
−
π
π
46
44
45
ax-mp
π
π
π
π
⊢
ℑ
-1
−
π
π
⊆
ℑ
-1
−
π
π
47
logrn
π
π
⊢
ran
log
=
ℑ
-1
−
π
π
48
46
47
sseqtrri
π
π
⊢
ℑ
-1
−
π
π
⊆
ran
log
49
48
sseli
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
x
∈
ran
log
50
logef
⊢
x
∈
ran
log
→
log
e
x
=
x
51
49
50
syl
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
log
e
x
=
x
52
elpreima
π
π
π
π
⊢
ℑ
Fn
ℂ
→
x
∈
ℑ
-1
−
π
π
↔
x
∈
ℂ
∧
ℑ
x
∈
−
π
π
53
34
35
52
mp2b
π
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
↔
x
∈
ℂ
∧
ℑ
x
∈
−
π
π
54
efcl
⊢
x
∈
ℂ
→
e
x
∈
ℂ
55
54
adantr
π
π
⊢
x
∈
ℂ
∧
ℑ
x
∈
−
π
π
→
e
x
∈
ℂ
56
53
55
sylbi
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
e
x
∈
ℂ
57
53
simplbi
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
x
∈
ℂ
58
57
imcld
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
ℑ
x
∈
ℝ
59
eliooord
π
π
π
π
⊢
ℑ
x
∈
−
π
π
→
−
π
<
ℑ
x
∧
ℑ
x
<
π
60
53
59
simplbiim
π
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
−
π
<
ℑ
x
∧
ℑ
x
<
π
61
60
simprd
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
ℑ
x
<
π
62
58
61
ltned
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
ℑ
x
≠
π
63
51
adantr
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
log
e
x
=
x
64
63
fveq2d
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
ℑ
log
e
x
=
ℑ
x
65
simpr
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
e
x
∈
−∞
0
66
mnfxr
⊢
−∞
∈
ℝ
*
67
0re
⊢
0
∈
ℝ
68
elioc2
⊢
−∞
∈
ℝ
*
∧
0
∈
ℝ
→
e
x
∈
−∞
0
↔
e
x
∈
ℝ
∧
−∞
<
e
x
∧
e
x
≤
0
69
66
67
68
mp2an
⊢
e
x
∈
−∞
0
↔
e
x
∈
ℝ
∧
−∞
<
e
x
∧
e
x
≤
0
70
65
69
sylib
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
e
x
∈
ℝ
∧
−∞
<
e
x
∧
e
x
≤
0
71
70
simp1d
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
e
x
∈
ℝ
72
0red
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
0
∈
ℝ
73
70
simp3d
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
e
x
≤
0
74
efne0
⊢
x
∈
ℂ
→
e
x
≠
0
75
57
74
syl
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
e
x
≠
0
76
75
adantr
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
e
x
≠
0
77
76
necomd
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
0
≠
e
x
78
71
72
73
77
leneltd
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
e
x
<
0
79
71
78
negelrpd
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
−
e
x
∈
ℝ
+
80
lognegb
π
⊢
e
x
∈
ℂ
∧
e
x
≠
0
→
−
e
x
∈
ℝ
+
↔
ℑ
log
e
x
=
π
81
56
75
80
syl2anc
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
−
e
x
∈
ℝ
+
↔
ℑ
log
e
x
=
π
82
81
adantr
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
−
e
x
∈
ℝ
+
↔
ℑ
log
e
x
=
π
83
79
82
mpbid
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
ℑ
log
e
x
=
π
84
64
83
eqtr3d
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
∧
e
x
∈
−∞
0
→
ℑ
x
=
π
85
84
ex
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
e
x
∈
−∞
0
→
ℑ
x
=
π
86
85
necon3ad
π
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
ℑ
x
≠
π
→
¬
e
x
∈
−∞
0
87
62
86
mpd
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
¬
e
x
∈
−∞
0
88
56
87
eldifd
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
e
x
∈
ℂ
∖
−∞
0
89
88
1
eleqtrrdi
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
e
x
∈
D
90
funfvima2
⊢
Fun
log
∧
D
⊆
dom
log
→
e
x
∈
D
→
log
e
x
∈
log
D
91
4
8
90
mp2an
⊢
e
x
∈
D
→
log
e
x
∈
log
D
92
89
91
syl
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
log
e
x
∈
log
D
93
51
92
eqeltrrd
π
π
⊢
x
∈
ℑ
-1
−
π
π
→
x
∈
log
D
94
93
ssriv
π
π
⊢
ℑ
-1
−
π
π
⊆
log
D
95
39
94
eqssi
π
π
⊢
log
D
=
ℑ
-1
−
π
π
96
imcncf
⊢
ℑ
:
ℂ
⟶
cn
ℝ
97
ssid
⊢
ℂ
⊆
ℂ
98
ax-resscn
⊢
ℝ
⊆
ℂ
99
eqid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
100
99
cnfldtopon
⊢
TopOpen
ℂ
fld
∈
TopOn
ℂ
101
100
toponrestid
⊢
TopOpen
ℂ
fld
=
TopOpen
ℂ
fld
↾
𝑡
ℂ
102
99
tgioo2
⊢
topGen
ran
.
=
TopOpen
ℂ
fld
↾
𝑡
ℝ
103
99
101
102
cncfcn
⊢
ℂ
⊆
ℂ
∧
ℝ
⊆
ℂ
→
ℂ
⟶
cn
ℝ
=
TopOpen
ℂ
fld
Cn
topGen
ran
.
104
97
98
103
mp2an
⊢
ℂ
⟶
cn
ℝ
=
TopOpen
ℂ
fld
Cn
topGen
ran
.
105
96
104
eleqtri
⊢
ℑ
∈
TopOpen
ℂ
fld
Cn
topGen
ran
.
106
iooretop
π
π
⊢
−
π
π
∈
topGen
ran
.
107
cnima
π
π
π
π
⊢
ℑ
∈
TopOpen
ℂ
fld
Cn
topGen
ran
.
∧
−
π
π
∈
topGen
ran
.
→
ℑ
-1
−
π
π
∈
TopOpen
ℂ
fld
108
105
106
107
mp2an
π
π
⊢
ℑ
-1
−
π
π
∈
TopOpen
ℂ
fld
109
95
108
eqeltri
⊢
log
D
∈
TopOpen
ℂ
fld