Metamath Proof Explorer


Theorem dvloglem

Description: Lemma for dvlog . (Contributed by Mario Carneiro, 24-Feb-2015)

Ref Expression
Hypothesis logcn.d D = −∞ 0
Assertion dvloglem log D TopOpen fld

Proof

Step Hyp Ref Expression
1 logcn.d D = −∞ 0
2 logf1o log : 0 1-1 onto ran log
3 f1ofun log : 0 1-1 onto ran log Fun log
4 2 3 ax-mp Fun log
5 1 logdmss D 0
6 f1odm log : 0 1-1 onto ran log dom log = 0
7 2 6 ax-mp dom log = 0
8 5 7 sseqtrri D dom log
9 funimass4 Fun log D dom log log D -1 π π x D log x -1 π π
10 4 8 9 mp2an log D -1 π π x D log x -1 π π
11 1 ellogdm x D x x x +
12 11 simplbi x D x
13 1 logdmn0 x D x 0
14 12 13 logcld x D log x
15 14 imcld x D log x
16 12 13 logimcld x D π < log x log x π
17 16 simpld x D π < log x
18 pire π
19 18 a1i x D π
20 16 simprd x D log x π
21 1 logdmnrp x D ¬ x +
22 lognegb x x 0 x + log x = π
23 12 13 22 syl2anc x D x + log x = π
24 23 necon3bbid x D ¬ x + log x π
25 21 24 mpbid x D log x π
26 25 necomd x D π log x
27 15 19 20 26 leneltd x D log x < π
28 18 renegcli π
29 28 rexri π *
30 18 rexri π *
31 elioo2 π * π * log x π π log x π < log x log x < π
32 29 30 31 mp2an log x π π log x π < log x log x < π
33 15 17 27 32 syl3anbrc x D log x π π
34 imf :
35 ffn : Fn
36 elpreima Fn log x -1 π π log x log x π π
37 34 35 36 mp2b log x -1 π π log x log x π π
38 14 33 37 sylanbrc x D log x -1 π π
39 10 38 mprgbir log D -1 π π
40 df-ioo . = x * , y * z * | x < z z < y
41 df-ioc . = x * , y * z * | x < z z y
42 idd π * w * π < w π < w
43 xrltle w * π * w < π w π
44 40 41 42 43 ixxssixx π π π π
45 imass2 π π π π -1 π π -1 π π
46 44 45 ax-mp -1 π π -1 π π
47 logrn ran log = -1 π π
48 46 47 sseqtrri -1 π π ran log
49 48 sseli x -1 π π x ran log
50 logef x ran log log e x = x
51 49 50 syl x -1 π π log e x = x
52 elpreima Fn x -1 π π x x π π
53 34 35 52 mp2b x -1 π π x x π π
54 efcl x e x
55 54 adantr x x π π e x
56 53 55 sylbi x -1 π π e x
57 53 simplbi x -1 π π x
58 57 imcld x -1 π π x
59 eliooord x π π π < x x < π
60 53 59 simplbiim x -1 π π π < x x < π
61 60 simprd x -1 π π x < π
62 58 61 ltned x -1 π π x π
63 51 adantr x -1 π π e x −∞ 0 log e x = x
64 63 fveq2d x -1 π π e x −∞ 0 log e x = x
65 simpr x -1 π π e x −∞ 0 e x −∞ 0
66 mnfxr −∞ *
67 0re 0
68 elioc2 −∞ * 0 e x −∞ 0 e x −∞ < e x e x 0
69 66 67 68 mp2an e x −∞ 0 e x −∞ < e x e x 0
70 65 69 sylib x -1 π π e x −∞ 0 e x −∞ < e x e x 0
71 70 simp1d x -1 π π e x −∞ 0 e x
72 0red x -1 π π e x −∞ 0 0
73 70 simp3d x -1 π π e x −∞ 0 e x 0
74 efne0 x e x 0
75 57 74 syl x -1 π π e x 0
76 75 adantr x -1 π π e x −∞ 0 e x 0
77 76 necomd x -1 π π e x −∞ 0 0 e x
78 71 72 73 77 leneltd x -1 π π e x −∞ 0 e x < 0
79 71 78 negelrpd x -1 π π e x −∞ 0 e x +
80 lognegb e x e x 0 e x + log e x = π
81 56 75 80 syl2anc x -1 π π e x + log e x = π
82 81 adantr x -1 π π e x −∞ 0 e x + log e x = π
83 79 82 mpbid x -1 π π e x −∞ 0 log e x = π
84 64 83 eqtr3d x -1 π π e x −∞ 0 x = π
85 84 ex x -1 π π e x −∞ 0 x = π
86 85 necon3ad x -1 π π x π ¬ e x −∞ 0
87 62 86 mpd x -1 π π ¬ e x −∞ 0
88 56 87 eldifd x -1 π π e x −∞ 0
89 88 1 eleqtrrdi x -1 π π e x D
90 funfvima2 Fun log D dom log e x D log e x log D
91 4 8 90 mp2an e x D log e x log D
92 89 91 syl x -1 π π log e x log D
93 51 92 eqeltrrd x -1 π π x log D
94 93 ssriv -1 π π log D
95 39 94 eqssi log D = -1 π π
96 imcncf : cn
97 ssid
98 ax-resscn
99 eqid TopOpen fld = TopOpen fld
100 99 cnfldtopon TopOpen fld TopOn
101 100 toponrestid TopOpen fld = TopOpen fld 𝑡
102 99 tgioo2 topGen ran . = TopOpen fld 𝑡
103 99 101 102 cncfcn cn = TopOpen fld Cn topGen ran .
104 97 98 103 mp2an cn = TopOpen fld Cn topGen ran .
105 96 104 eleqtri TopOpen fld Cn topGen ran .
106 iooretop π π topGen ran .
107 cnima TopOpen fld Cn topGen ran . π π topGen ran . -1 π π TopOpen fld
108 105 106 107 mp2an -1 π π TopOpen fld
109 95 108 eqeltri log D TopOpen fld