Metamath Proof Explorer


Theorem dvrelogpow2b

Description: Derivative of the power of the binary logarithm. (Contributed by metakunt, 12-Aug-2024)

Ref Expression
Hypotheses dvrelogpow2b.1 φA
dvrelogpow2b.2 φB
dvrelogpow2b.3 φ0<A
dvrelogpow2b.4 φAB
dvrelogpow2b.5 F=xABlog2xN
dvrelogpow2b.6 G=xABClogxN1x
dvrelogpow2b.7 C=Nlog2N
dvrelogpow2b.8 φN
Assertion dvrelogpow2b φDF=G

Proof

Step Hyp Ref Expression
1 dvrelogpow2b.1 φA
2 dvrelogpow2b.2 φB
3 dvrelogpow2b.3 φ0<A
4 dvrelogpow2b.4 φAB
5 dvrelogpow2b.5 F=xABlog2xN
6 dvrelogpow2b.6 G=xABClogxN1x
7 dvrelogpow2b.7 C=Nlog2N
8 dvrelogpow2b.8 φN
9 5 a1i φF=xABlog2xN
10 9 oveq2d φDF=dxABlog2xNdx
11 reelprrecn
12 11 a1i φ
13 cnelprrecn
14 13 a1i φ
15 elioore xABx
16 15 adantl φxABx
17 16 recnd φxABx
18 1 adantr φxABA
19 2 adantr φxABB
20 3 adantr φxAB0<A
21 4 adantr φxABAB
22 simpr φxABxAB
23 18 19 20 21 22 0nonelalab φxAB0x
24 23 necomd φxABx0
25 17 24 logcld φxABlogx
26 2cnd φxAB2
27 0ne2 02
28 27 a1i φxAB02
29 28 necomd φxAB20
30 26 29 logcld φxABlog2
31 0red φxAB0
32 1lt2 1<2
33 32 a1i φxAB1<2
34 2rp 2+
35 loggt0b 2+0<log21<2
36 34 35 ax-mp 0<log21<2
37 33 36 sylibr φxAB0<log2
38 31 37 ltned φxAB0log2
39 38 necomd φxABlog20
40 25 30 39 divcld φxABlogxlog2
41 1red φxAB1
42 41 33 ltned φxAB12
43 42 necomd φxAB21
44 29 43 nelprd φxAB¬201
45 26 44 eldifd φxAB201
46 necom 0xx0
47 46 imbi2i φxAB0xφxABx0
48 23 47 mpbi φxABx0
49 48 neneqd φxAB¬x=0
50 velsn x0x=0
51 49 50 sylnibr φxAB¬x0
52 17 51 eldifd φxABx0
53 logbval 201x0log2x=logxlog2
54 45 52 53 syl2anc φxABlog2x=logxlog2
55 54 eleq1d φxABlog2xlogxlog2
56 40 55 mpbird φxABlog2x
57 34 a1i φxAB2+
58 57 relogcld φxABlog2
59 16 58 remulcld φxABxlog2
60 57 rpne0d φxAB20
61 26 60 logcld φxABlog2
62 17 61 24 39 mulne0d φxABxlog20
63 41 59 62 redivcld φxAB1xlog2
64 simpr φyy
65 8 nnnn0d φN0
66 65 adantr φyN0
67 64 66 expcld φyyN
68 8 nncnd φN
69 68 adantr φyN
70 nnm1nn0 NN10
71 8 70 syl φN10
72 71 adantr φyN10
73 64 72 expcld φyyN1
74 69 73 mulcld φyNyN1
75 1 rexrd φA*
76 2 rexrd φB*
77 0red φ0
78 77 1 3 ltled φ0A
79 eqid xABlog2x=xABlog2x
80 eqid xAB1xlog2=xAB1xlog2
81 75 76 78 4 79 80 dvrelog2b φdxABlog2xdx=xAB1xlog2
82 dvexp NdyyNdy=yNyN1
83 8 82 syl φdyyNdy=yNyN1
84 oveq1 y=log2xyN=log2xN
85 oveq1 y=log2xyN1=log2xN1
86 85 oveq2d y=log2xNyN1=Nlog2xN1
87 12 14 56 63 67 74 81 83 84 86 dvmptco φdxABlog2xNdx=xABNlog2xN11xlog2
88 6 a1i φG=xABClogxN1x
89 7 a1i φxABC=Nlog2N
90 89 oveq1d φxABClogxN1x=Nlog2NlogxN1x
91 68 adantr φxABN
92 65 nn0zd φN
93 92 adantr φxABN
94 30 39 93 expclzd φxABlog2N
95 71 adantr φxABN10
96 25 95 expcld φxABlogxN1
97 30 39 93 expne0d φxABlog2N0
98 91 94 96 17 97 24 divmuldivd φxABNlog2NlogxN1x=NlogxN1log2Nx
99 94 17 mulcomd φxABlog2Nx=xlog2N
100 1cnd φ1
101 100 68 pncan3d φ1+N-1=N
102 101 eqcomd φN=1+N-1
103 102 adantr φxABN=1+N-1
104 103 oveq2d φxABlog2N=log21+N-1
105 1nn0 10
106 105 a1i φxAB10
107 30 95 106 expaddd φxABlog21+N-1=log21log2N1
108 104 107 eqtrd φxABlog2N=log21log2N1
109 30 exp1d φxABlog21=log2
110 109 oveq1d φxABlog21log2N1=log2log2N1
111 108 110 eqtrd φxABlog2N=log2log2N1
112 111 oveq2d φxABxlog2N=xlog2log2N1
113 99 112 eqtrd φxABlog2Nx=xlog2log2N1
114 30 95 expcld φxABlog2N1
115 17 30 114 mulassd φxABxlog2log2N1=xlog2log2N1
116 115 eqcomd φxABxlog2log2N1=xlog2log2N1
117 113 116 eqtrd φxABlog2Nx=xlog2log2N1
118 17 30 mulcld φxABxlog2
119 118 114 mulcomd φxABxlog2log2N1=log2N1xlog2
120 117 119 eqtrd φxABlog2Nx=log2N1xlog2
121 120 oveq2d φxABNlogxN1log2Nx=NlogxN1log2N1xlog2
122 98 121 eqtrd φxABNlog2NlogxN1x=NlogxN1log2N1xlog2
123 90 122 eqtrd φxABClogxN1x=NlogxN1log2N1xlog2
124 91 96 mulcld φxABNlogxN1
125 1zzd φxAB1
126 93 125 zsubcld φxABN1
127 30 39 126 expne0d φxABlog2N10
128 124 114 118 127 62 divdiv1d φxABNlogxN1log2N1xlog2=NlogxN1log2N1xlog2
129 128 eqcomd φxABNlogxN1log2N1xlog2=NlogxN1log2N1xlog2
130 123 129 eqtrd φxABClogxN1x=NlogxN1log2N1xlog2
131 91 96 114 127 divassd φxABNlogxN1log2N1=NlogxN1log2N1
132 131 oveq1d φxABNlogxN1log2N1xlog2=NlogxN1log2N1xlog2
133 130 132 eqtrd φxABClogxN1x=NlogxN1log2N1xlog2
134 25 30 39 95 expdivd φxABlogxlog2N1=logxN1log2N1
135 134 eqcomd φxABlogxN1log2N1=logxlog2N1
136 135 oveq2d φxABNlogxN1log2N1=Nlogxlog2N1
137 136 oveq1d φxABNlogxN1log2N1xlog2=Nlogxlog2N1xlog2
138 133 137 eqtrd φxABClogxN1x=Nlogxlog2N1xlog2
139 54 oveq1d φxABlog2xN1=logxlog2N1
140 139 oveq2d φxABNlog2xN1=Nlogxlog2N1
141 140 oveq1d φxABNlog2xN1xlog2=Nlogxlog2N1xlog2
142 141 eqcomd φxABNlogxlog2N1xlog2=Nlog2xN1xlog2
143 138 142 eqtrd φxABClogxN1x=Nlog2xN1xlog2
144 56 95 expcld φxABlog2xN1
145 91 144 mulcld φxABNlog2xN1
146 145 118 62 divrecd φxABNlog2xN1xlog2=Nlog2xN11xlog2
147 143 146 eqtrd φxABClogxN1x=Nlog2xN11xlog2
148 147 mpteq2dva φxABClogxN1x=xABNlog2xN11xlog2
149 88 148 eqtrd φG=xABNlog2xN11xlog2
150 149 eqcomd φxABNlog2xN11xlog2=G
151 87 150 eqtrd φdxABlog2xNdx=G
152 10 151 eqtrd φDF=G