Metamath Proof Explorer


Theorem emcllem2

Description: Lemma for emcl . F is increasing, and G is decreasing. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F=nm=1n1mlogn
emcl.2 G=nm=1n1mlogn+1
Assertion emcllem2 NFN+1FNGNGN+1

Proof

Step Hyp Ref Expression
1 emcl.1 F=nm=1n1mlogn
2 emcl.2 G=nm=1n1mlogn+1
3 peano2nn NN+1
4 3 nnrecred N1N+1
5 3 nnrpd NN+1+
6 5 relogcld NlogN+1
7 nnrp NN+
8 7 relogcld NlogN
9 6 8 resubcld NlogN+1logN
10 fzfid N1NFin
11 elfznn m1Nm
12 11 adantl Nm1Nm
13 12 nnrecred Nm1N1m
14 10 13 fsumrecl Nm=1N1m
15 5 rpreccld N1N+1+
16 15 rpge0d N01N+1
17 1div1e1 11=1
18 1re 1
19 ltaddrp 1N+1<1+N
20 18 7 19 sylancr N1<1+N
21 ax-1cn 1
22 nncn NN
23 addcom 1N1+N=N+1
24 21 22 23 sylancr N1+N=N+1
25 20 24 breqtrd N1<N+1
26 17 25 eqbrtrid N11<N+1
27 3 nnred NN+1
28 3 nngt0d N0<N+1
29 0lt1 0<1
30 ltrec1 10<1N+10<N+111<N+11N+1<1
31 18 29 30 mpanl12 N+10<N+111<N+11N+1<1
32 27 28 31 syl2anc N11<N+11N+1<1
33 26 32 mpbid N1N+1<1
34 4 16 33 eflegeo Ne1N+1111N+1
35 27 recnd NN+1
36 nnne0 NN0
37 3 nnne0d NN+10
38 22 35 36 37 recdivd N1NN+1=N+1N
39 1cnd N1
40 35 39 35 37 divsubdird NN+1-1N+1=N+1N+11N+1
41 pncan N1N+1-1=N
42 22 21 41 sylancl NN+1-1=N
43 42 oveq1d NN+1-1N+1=NN+1
44 35 37 dividd NN+1N+1=1
45 44 oveq1d NN+1N+11N+1=11N+1
46 40 43 45 3eqtr3rd N11N+1=NN+1
47 46 oveq2d N111N+1=1NN+1
48 5 7 rpdivcld NN+1N+
49 48 reeflogd NelogN+1N=N+1N
50 38 47 49 3eqtr4d N111N+1=elogN+1N
51 34 50 breqtrd Ne1N+1elogN+1N
52 5 7 relogdivd NlogN+1N=logN+1logN
53 52 9 eqeltrd NlogN+1N
54 efle 1N+1logN+1N1N+1logN+1Ne1N+1elogN+1N
55 4 53 54 syl2anc N1N+1logN+1Ne1N+1elogN+1N
56 51 55 mpbird N1N+1logN+1N
57 56 52 breqtrd N1N+1logN+1logN
58 4 9 14 57 leadd2dd Nm=1N1m+1N+1m=1N1m+logN+1-logN
59 id NN
60 nnuz =1
61 59 60 eleqtrdi NN1
62 elfznn m1N+1m
63 62 adantl Nm1N+1m
64 63 nnrecred Nm1N+11m
65 64 recnd Nm1N+11m
66 oveq2 m=N+11m=1N+1
67 61 65 66 fsump1 Nm=1N+11m=m=1N1m+1N+1
68 6 recnd NlogN+1
69 14 recnd Nm=1N1m
70 8 recnd NlogN
71 68 69 70 addsub12d NlogN+1+m=1N1m-logN=m=1N1m+logN+1-logN
72 58 67 71 3brtr4d Nm=1N+11mlogN+1+m=1N1m-logN
73 fzfid N1N+1Fin
74 73 64 fsumrecl Nm=1N+11m
75 14 8 resubcld Nm=1N1mlogN
76 74 6 75 lesubadd2d Nm=1N+11mlogN+1m=1N1mlogNm=1N+11mlogN+1+m=1N1m-logN
77 72 76 mpbird Nm=1N+11mlogN+1m=1N1mlogN
78 oveq2 n=N+11n=1N+1
79 78 sumeq1d n=N+1m=1n1m=m=1N+11m
80 fveq2 n=N+1logn=logN+1
81 79 80 oveq12d n=N+1m=1n1mlogn=m=1N+11mlogN+1
82 ovex m=1N+11mlogN+1V
83 81 1 82 fvmpt N+1FN+1=m=1N+11mlogN+1
84 3 83 syl NFN+1=m=1N+11mlogN+1
85 oveq2 n=N1n=1N
86 85 sumeq1d n=Nm=1n1m=m=1N1m
87 fveq2 n=Nlogn=logN
88 86 87 oveq12d n=Nm=1n1mlogn=m=1N1mlogN
89 ovex m=1N1mlogNV
90 88 1 89 fvmpt NFN=m=1N1mlogN
91 77 84 90 3brtr4d NFN+1FN
92 peano2nn N+1N+1+1
93 3 92 syl NN+1+1
94 93 nnrpd NN+1+1+
95 94 relogcld NlogN+1+1
96 95 6 resubcld NlogN+1+1logN+1
97 logdifbnd N+1+logN+1+1logN+11N+1
98 5 97 syl NlogN+1+1logN+11N+1
99 96 4 14 98 leadd2dd Nm=1N1m+logN+1+1-logN+1m=1N1m+1N+1
100 95 recnd NlogN+1+1
101 69 68 100 subadd23d Nm=1N1m-logN+1+logN+1+1=m=1N1m+logN+1+1-logN+1
102 99 101 67 3brtr4d Nm=1N1m-logN+1+logN+1+1m=1N+11m
103 14 6 resubcld Nm=1N1mlogN+1
104 leaddsub m=1N1mlogN+1logN+1+1m=1N+11mm=1N1m-logN+1+logN+1+1m=1N+11mm=1N1mlogN+1m=1N+11mlogN+1+1
105 103 95 74 104 syl3anc Nm=1N1m-logN+1+logN+1+1m=1N+11mm=1N1mlogN+1m=1N+11mlogN+1+1
106 102 105 mpbid Nm=1N1mlogN+1m=1N+11mlogN+1+1
107 fvoveq1 n=Nlogn+1=logN+1
108 86 107 oveq12d n=Nm=1n1mlogn+1=m=1N1mlogN+1
109 ovex m=1N1mlogN+1V
110 108 2 109 fvmpt NGN=m=1N1mlogN+1
111 fvoveq1 n=N+1logn+1=logN+1+1
112 79 111 oveq12d n=N+1m=1n1mlogn+1=m=1N+11mlogN+1+1
113 ovex m=1N+11mlogN+1+1V
114 112 2 113 fvmpt N+1GN+1=m=1N+11mlogN+1+1
115 3 114 syl NGN+1=m=1N+11mlogN+1+1
116 106 110 115 3brtr4d NGNGN+1
117 91 116 jca NFN+1FNGNGN+1