Metamath Proof Explorer


Theorem esumiun

Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019)

Ref Expression
Hypotheses esumiun.0 φAV
esumiun.1 φjABW
esumiun.2 φjAkBC0+∞
Assertion esumiun φ*kjABC*jA*kBC

Proof

Step Hyp Ref Expression
1 esumiun.0 φAV
2 esumiun.1 φjABW
3 esumiun.2 φjAkBC0+∞
4 1 2 aciunf1 φff:jAB1-1jAj×BljAB2ndfl=l
5 f1f1orn f:jAB1-1jAj×Bf:jAB1-1 ontoranf
6 5 anim1i f:jAB1-1jAj×BljAB2ndfl=lf:jAB1-1 ontoranfljAB2ndfl=l
7 f1f f:jAB1-1jAj×Bf:jABjAj×B
8 7 frnd f:jAB1-1jAj×BranfjAj×B
9 8 adantr f:jAB1-1jAj×BljAB2ndfl=lranfjAj×B
10 6 9 jca f:jAB1-1jAj×BljAB2ndfl=lf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B
11 10 eximi ff:jAB1-1jAj×BljAB2ndfl=lff:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B
12 4 11 syl φff:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B
13 nfv zφf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B
14 nfcv _zC
15 nfcsb1v _k2ndz/kC
16 nfcv _zjAB
17 nfcv _zranf
18 nfcv _zf-1
19 csbeq1a k=2ndzC=2ndz/kC
20 2 ralrimiva φjABW
21 iunexg AVjABWjABV
22 1 20 21 syl2anc φjABV
23 22 adantr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BjABV
24 simprl φf:jAB1-1 ontoranfranfjAj×Bf:jAB1-1 ontoranf
25 f1ocnv f:jAB1-1 ontoranff-1:ranf1-1 ontojAB
26 24 25 syl φf:jAB1-1 ontoranfranfjAj×Bf-1:ranf1-1 ontojAB
27 26 adantrlr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×Bf-1:ranf1-1 ontojAB
28 nfv jφ
29 nfcv _jf
30 nfiu1 _jjAB
31 29 nfrn _jranf
32 29 30 31 nff1o jf:jAB1-1 ontoranf
33 nfv j2ndfl=l
34 30 33 nfralw jljAB2ndfl=l
35 32 34 nfan jf:jAB1-1 ontoranfljAB2ndfl=l
36 nfcv _jranf
37 nfiu1 _jjAj×B
38 36 37 nfss jranfjAj×B
39 35 38 nfan jf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B
40 28 39 nfan jφf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B
41 nfv jzranf
42 40 41 nfan jφf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×Bzranf
43 simpr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=zfk=z
44 43 fveq2d φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=z2ndfk=2ndz
45 simplr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=zkjAB
46 simp-4r φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×Bf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B
47 46 simpld φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×Bf:jAB1-1 ontoranfljAB2ndfl=l
48 47 simprd φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BljAB2ndfl=l
49 48 ad2antrr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=zljAB2ndfl=l
50 2fveq3 l=k2ndfl=2ndfk
51 id l=kl=k
52 50 51 eqeq12d l=k2ndfl=l2ndfk=k
53 52 rspcva kjABljAB2ndfl=l2ndfk=k
54 45 49 53 syl2anc φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=z2ndfk=k
55 44 54 eqtr3d φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=z2ndz=k
56 47 simpld φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×Bf:jAB1-1 ontoranf
57 56 ad2antrr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=zf:jAB1-1 ontoranf
58 f1ocnvfv1 f:jAB1-1 ontoranfkjABf-1fk=k
59 57 45 58 syl2anc φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=zf-1fk=k
60 43 fveq2d φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=zf-1fk=f-1z
61 55 59 60 3eqtr2rd φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=zf-1z=2ndz
62 f1ofn f:jAB1-1 ontoranffFnjAB
63 56 62 syl φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BfFnjAB
64 simpllr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×Bzranf
65 fvelrnb fFnjABzranfkjABfk=z
66 65 biimpa fFnjABzranfkjABfk=z
67 63 64 66 syl2anc φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×BkjABfk=z
68 61 67 r19.29a φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×Bf-1z=2ndz
69 simprr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BranfjAj×B
70 69 sselda φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfzjAj×B
71 eliun zjAj×BjAzj×B
72 70 71 sylib φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzranfjAzj×B
73 42 68 72 r19.29af φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×Bzranff-1z=2ndz
74 nfcv _jk
75 74 30 nfel jkjAB
76 28 75 nfan jφkjAB
77 3 adantllr φkjABjAkBC0+∞
78 eliun kjABjAkB
79 78 biimpi kjABjAkB
80 79 adantl φkjABjAkB
81 76 77 80 r19.29af φkjABC0+∞
82 81 adantlr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BkjABC0+∞
83 13 14 15 16 17 18 19 23 27 73 82 esumf1o φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B*kjABC=*zranf2ndz/kC
84 83 eqcomd φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B*zranf2ndz/kC=*kjABC
85 vsnex jV
86 85 a1i φjAjV
87 86 2 xpexd φjAj×BV
88 87 ralrimiva φjAj×BV
89 iunexg AVjAj×BVjAj×BV
90 1 88 89 syl2anc φjAj×BV
91 90 adantr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BjAj×BV
92 nfcv _jz
93 92 37 nfel jzjAj×B
94 28 93 nfan jφzjAj×B
95 nfcv _j2ndz
96 nfcv _jC
97 95 96 nfcsbw _j2ndz/kC
98 nfcv _j0+∞
99 97 98 nfel j2ndz/kC0+∞
100 simprr φzjAj×BjA1stz=j2ndzB2ndzB
101 simplll φzjAj×BjA1stz=j2ndzBφ
102 simplr φzjAj×BjA1stz=j2ndzBjA
103 3 ralrimiva φjAkBC0+∞
104 101 102 103 syl2anc φzjAj×BjA1stz=j2ndzBkBC0+∞
105 rspcsbela 2ndzBkBC0+∞2ndz/kC0+∞
106 100 104 105 syl2anc φzjAj×BjA1stz=j2ndzB2ndz/kC0+∞
107 xp1st zj×B1stzj
108 elsni 1stzj1stz=j
109 107 108 syl zj×B1stz=j
110 xp2nd zj×B2ndzB
111 109 110 jca zj×B1stz=j2ndzB
112 111 reximi jAzj×BjA1stz=j2ndzB
113 71 112 sylbi zjAj×BjA1stz=j2ndzB
114 113 adantl φzjAj×BjA1stz=j2ndzB
115 94 99 106 114 r19.29af2 φzjAj×B2ndz/kC0+∞
116 115 adantlr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BzjAj×B2ndz/kC0+∞
117 simprr φf:jAB1-1 ontoranfranfjAj×BranfjAj×B
118 117 adantrlr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×BranfjAj×B
119 13 91 116 118 esummono φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B*zranf2ndz/kC*zjAj×B2ndz/kC
120 84 119 eqbrtrrd φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B*kjABC*zjAj×B2ndz/kC
121 vex jV
122 vex kV
123 121 122 op2ndd z=jk2ndz=k
124 123 eqcomd z=jkk=2ndz
125 124 19 syl z=jkC=2ndz/kC
126 125 eqcomd z=jk2ndz/kC=C
127 3 anasss φjAkBC0+∞
128 15 126 1 2 127 esum2d φ*jA*kBC=*zjAj×B2ndz/kC
129 128 adantr φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B*jA*kBC=*zjAj×B2ndz/kC
130 120 129 breqtrrd φf:jAB1-1 ontoranfljAB2ndfl=lranfjAj×B*kjABC*jA*kBC
131 12 130 exlimddv φ*kjABC*jA*kBC