Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Factorial function
faclbnd
Next ⟩
faclbnd2
Metamath Proof Explorer
Ascii
Unicode
Theorem
faclbnd
Description:
A lower bound for the factorial function.
(Contributed by
NM
, 17-Dec-2005)
Ref
Expression
Assertion
faclbnd
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
→
M
N
+
1
≤
M
M
N
!
Proof
Step
Hyp
Ref
Expression
1
elnn0
⊢
M
∈
ℕ
0
↔
M
∈
ℕ
∨
M
=
0
2
oveq1
⊢
j
=
0
→
j
+
1
=
0
+
1
3
2
oveq2d
⊢
j
=
0
→
M
j
+
1
=
M
0
+
1
4
fveq2
⊢
j
=
0
→
j
!
=
0
!
5
4
oveq2d
⊢
j
=
0
→
M
M
j
!
=
M
M
0
!
6
3
5
breq12d
⊢
j
=
0
→
M
j
+
1
≤
M
M
j
!
↔
M
0
+
1
≤
M
M
0
!
7
6
imbi2d
⊢
j
=
0
→
M
∈
ℕ
→
M
j
+
1
≤
M
M
j
!
↔
M
∈
ℕ
→
M
0
+
1
≤
M
M
0
!
8
oveq1
⊢
j
=
k
→
j
+
1
=
k
+
1
9
8
oveq2d
⊢
j
=
k
→
M
j
+
1
=
M
k
+
1
10
fveq2
⊢
j
=
k
→
j
!
=
k
!
11
10
oveq2d
⊢
j
=
k
→
M
M
j
!
=
M
M
k
!
12
9
11
breq12d
⊢
j
=
k
→
M
j
+
1
≤
M
M
j
!
↔
M
k
+
1
≤
M
M
k
!
13
12
imbi2d
⊢
j
=
k
→
M
∈
ℕ
→
M
j
+
1
≤
M
M
j
!
↔
M
∈
ℕ
→
M
k
+
1
≤
M
M
k
!
14
oveq1
⊢
j
=
k
+
1
→
j
+
1
=
k
+
1
+
1
15
14
oveq2d
⊢
j
=
k
+
1
→
M
j
+
1
=
M
k
+
1
+
1
16
fveq2
⊢
j
=
k
+
1
→
j
!
=
k
+
1
!
17
16
oveq2d
⊢
j
=
k
+
1
→
M
M
j
!
=
M
M
k
+
1
!
18
15
17
breq12d
⊢
j
=
k
+
1
→
M
j
+
1
≤
M
M
j
!
↔
M
k
+
1
+
1
≤
M
M
k
+
1
!
19
18
imbi2d
⊢
j
=
k
+
1
→
M
∈
ℕ
→
M
j
+
1
≤
M
M
j
!
↔
M
∈
ℕ
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
20
oveq1
⊢
j
=
N
→
j
+
1
=
N
+
1
21
20
oveq2d
⊢
j
=
N
→
M
j
+
1
=
M
N
+
1
22
fveq2
⊢
j
=
N
→
j
!
=
N
!
23
22
oveq2d
⊢
j
=
N
→
M
M
j
!
=
M
M
N
!
24
21
23
breq12d
⊢
j
=
N
→
M
j
+
1
≤
M
M
j
!
↔
M
N
+
1
≤
M
M
N
!
25
24
imbi2d
⊢
j
=
N
→
M
∈
ℕ
→
M
j
+
1
≤
M
M
j
!
↔
M
∈
ℕ
→
M
N
+
1
≤
M
M
N
!
26
nnre
⊢
M
∈
ℕ
→
M
∈
ℝ
27
nnge1
⊢
M
∈
ℕ
→
1
≤
M
28
elnnuz
⊢
M
∈
ℕ
↔
M
∈
ℤ
≥
1
29
28
biimpi
⊢
M
∈
ℕ
→
M
∈
ℤ
≥
1
30
26
27
29
leexp2ad
⊢
M
∈
ℕ
→
M
1
≤
M
M
31
0p1e1
⊢
0
+
1
=
1
32
31
oveq2i
⊢
M
0
+
1
=
M
1
33
32
a1i
⊢
M
∈
ℕ
→
M
0
+
1
=
M
1
34
fac0
⊢
0
!
=
1
35
34
oveq2i
⊢
M
M
0
!
=
M
M
⋅
1
36
nnnn0
⊢
M
∈
ℕ
→
M
∈
ℕ
0
37
26
36
reexpcld
⊢
M
∈
ℕ
→
M
M
∈
ℝ
38
37
recnd
⊢
M
∈
ℕ
→
M
M
∈
ℂ
39
38
mulridd
⊢
M
∈
ℕ
→
M
M
⋅
1
=
M
M
40
35
39
eqtrid
⊢
M
∈
ℕ
→
M
M
0
!
=
M
M
41
30
33
40
3brtr4d
⊢
M
∈
ℕ
→
M
0
+
1
≤
M
M
0
!
42
26
ad3antrrr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
∈
ℝ
43
simpllr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
k
∈
ℕ
0
44
peano2nn0
⊢
k
∈
ℕ
0
→
k
+
1
∈
ℕ
0
45
43
44
syl
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
k
+
1
∈
ℕ
0
46
42
45
reexpcld
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
k
+
1
∈
ℝ
47
36
ad3antrrr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
∈
ℕ
0
48
42
47
reexpcld
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
M
∈
ℝ
49
43
faccld
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
k
!
∈
ℕ
50
49
nnred
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
k
!
∈
ℝ
51
48
50
remulcld
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
M
k
!
∈
ℝ
52
nn0re
⊢
k
∈
ℕ
0
→
k
∈
ℝ
53
peano2re
⊢
k
∈
ℝ
→
k
+
1
∈
ℝ
54
43
52
53
3syl
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
k
+
1
∈
ℝ
55
nngt0
⊢
M
∈
ℕ
→
0
<
M
56
55
ad3antrrr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
0
<
M
57
0re
⊢
0
∈
ℝ
58
ltle
⊢
0
∈
ℝ
∧
M
∈
ℝ
→
0
<
M
→
0
≤
M
59
57
58
mpan
⊢
M
∈
ℝ
→
0
<
M
→
0
≤
M
60
42
56
59
sylc
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
0
≤
M
61
42
45
60
expge0d
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
0
≤
M
k
+
1
62
simplr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
k
+
1
≤
M
M
k
!
63
simprr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
≤
k
+
1
64
46
51
42
54
61
60
62
63
lemul12ad
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
≤
k
+
1
→
M
k
+
1
⋅
M
≤
M
M
k
!
k
+
1
65
64
anandis
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
≤
k
+
1
→
M
k
+
1
⋅
M
≤
M
M
k
!
k
+
1
66
nncn
⊢
M
∈
ℕ
→
M
∈
ℂ
67
expp1
⊢
M
∈
ℂ
∧
k
+
1
∈
ℕ
0
→
M
k
+
1
+
1
=
M
k
+
1
⋅
M
68
66
44
67
syl2an
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
k
+
1
+
1
=
M
k
+
1
⋅
M
69
68
adantr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
≤
k
+
1
→
M
k
+
1
+
1
=
M
k
+
1
⋅
M
70
facp1
⊢
k
∈
ℕ
0
→
k
+
1
!
=
k
!
k
+
1
71
70
adantl
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
!
=
k
!
k
+
1
72
71
oveq2d
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
M
k
+
1
!
=
M
M
k
!
k
+
1
73
38
adantr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
M
∈
ℂ
74
faccl
⊢
k
∈
ℕ
0
→
k
!
∈
ℕ
75
74
nncnd
⊢
k
∈
ℕ
0
→
k
!
∈
ℂ
76
75
adantl
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
k
!
∈
ℂ
77
nn0cn
⊢
k
∈
ℕ
0
→
k
∈
ℂ
78
peano2cn
⊢
k
∈
ℂ
→
k
+
1
∈
ℂ
79
77
78
syl
⊢
k
∈
ℕ
0
→
k
+
1
∈
ℂ
80
79
adantl
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
∈
ℂ
81
73
76
80
mulassd
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
M
k
!
k
+
1
=
M
M
k
!
k
+
1
82
72
81
eqtr4d
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
M
k
+
1
!
=
M
M
k
!
k
+
1
83
82
adantr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
≤
k
+
1
→
M
M
k
+
1
!
=
M
M
k
!
k
+
1
84
65
69
83
3brtr4d
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
M
k
+
1
≤
M
M
k
!
∧
M
≤
k
+
1
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
85
84
exp32
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
k
+
1
≤
M
M
k
!
→
M
≤
k
+
1
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
86
85
com23
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
≤
k
+
1
→
M
k
+
1
≤
M
M
k
!
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
87
nn0ltp1le
⊢
k
+
1
∈
ℕ
0
∧
M
∈
ℕ
0
→
k
+
1
<
M
↔
k
+
1
+
1
≤
M
88
44
36
87
syl2anr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
<
M
↔
k
+
1
+
1
≤
M
89
peano2nn0
⊢
k
+
1
∈
ℕ
0
→
k
+
1
+
1
∈
ℕ
0
90
44
89
syl
⊢
k
∈
ℕ
0
→
k
+
1
+
1
∈
ℕ
0
91
reexpcl
⊢
M
∈
ℝ
∧
k
+
1
+
1
∈
ℕ
0
→
M
k
+
1
+
1
∈
ℝ
92
26
90
91
syl2an
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
k
+
1
+
1
∈
ℝ
93
92
adantr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
k
+
1
+
1
∈
ℝ
94
37
ad2antrr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
M
∈
ℝ
95
44
faccld
⊢
k
∈
ℕ
0
→
k
+
1
!
∈
ℕ
96
95
nnred
⊢
k
∈
ℕ
0
→
k
+
1
!
∈
ℝ
97
remulcl
⊢
M
M
∈
ℝ
∧
k
+
1
!
∈
ℝ
→
M
M
k
+
1
!
∈
ℝ
98
37
96
97
syl2an
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
M
k
+
1
!
∈
ℝ
99
98
adantr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
M
k
+
1
!
∈
ℝ
100
26
ad2antrr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
∈
ℝ
101
27
ad2antrr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
1
≤
M
102
simpr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
k
+
1
+
1
≤
M
103
90
ad2antlr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
k
+
1
+
1
∈
ℕ
0
104
103
nn0zd
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
k
+
1
+
1
∈
ℤ
105
nnz
⊢
M
∈
ℕ
→
M
∈
ℤ
106
105
ad2antrr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
∈
ℤ
107
eluz
⊢
k
+
1
+
1
∈
ℤ
∧
M
∈
ℤ
→
M
∈
ℤ
≥
k
+
1
+
1
↔
k
+
1
+
1
≤
M
108
104
106
107
syl2anc
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
∈
ℤ
≥
k
+
1
+
1
↔
k
+
1
+
1
≤
M
109
102
108
mpbird
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
∈
ℤ
≥
k
+
1
+
1
110
100
101
109
leexp2ad
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
k
+
1
+
1
≤
M
M
111
37
96
anim12i
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
M
∈
ℝ
∧
k
+
1
!
∈
ℝ
112
nn0re
⊢
M
∈
ℕ
0
→
M
∈
ℝ
113
id
⊢
M
∈
ℕ
0
→
M
∈
ℕ
0
114
nn0ge0
⊢
M
∈
ℕ
0
→
0
≤
M
115
112
113
114
expge0d
⊢
M
∈
ℕ
0
→
0
≤
M
M
116
36
115
syl
⊢
M
∈
ℕ
→
0
≤
M
M
117
95
nnge1d
⊢
k
∈
ℕ
0
→
1
≤
k
+
1
!
118
116
117
anim12i
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
0
≤
M
M
∧
1
≤
k
+
1
!
119
lemulge11
⊢
M
M
∈
ℝ
∧
k
+
1
!
∈
ℝ
∧
0
≤
M
M
∧
1
≤
k
+
1
!
→
M
M
≤
M
M
k
+
1
!
120
111
118
119
syl2anc
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
M
≤
M
M
k
+
1
!
121
120
adantr
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
M
≤
M
M
k
+
1
!
122
93
94
99
110
121
letrd
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
∧
k
+
1
+
1
≤
M
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
123
122
ex
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
+
1
≤
M
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
124
88
123
sylbid
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
<
M
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
125
124
a1dd
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
k
+
1
<
M
→
M
k
+
1
≤
M
M
k
!
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
126
52
53
syl
⊢
k
∈
ℕ
0
→
k
+
1
∈
ℝ
127
lelttric
⊢
M
∈
ℝ
∧
k
+
1
∈
ℝ
→
M
≤
k
+
1
∨
k
+
1
<
M
128
26
126
127
syl2an
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
≤
k
+
1
∨
k
+
1
<
M
129
86
125
128
mpjaod
⊢
M
∈
ℕ
∧
k
∈
ℕ
0
→
M
k
+
1
≤
M
M
k
!
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
130
129
expcom
⊢
k
∈
ℕ
0
→
M
∈
ℕ
→
M
k
+
1
≤
M
M
k
!
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
131
130
a2d
⊢
k
∈
ℕ
0
→
M
∈
ℕ
→
M
k
+
1
≤
M
M
k
!
→
M
∈
ℕ
→
M
k
+
1
+
1
≤
M
M
k
+
1
!
132
7
13
19
25
41
131
nn0ind
⊢
N
∈
ℕ
0
→
M
∈
ℕ
→
M
N
+
1
≤
M
M
N
!
133
132
impcom
⊢
M
∈
ℕ
∧
N
∈
ℕ
0
→
M
N
+
1
≤
M
M
N
!
134
faccl
⊢
N
∈
ℕ
0
→
N
!
∈
ℕ
135
134
nnnn0d
⊢
N
∈
ℕ
0
→
N
!
∈
ℕ
0
136
135
nn0ge0d
⊢
N
∈
ℕ
0
→
0
≤
N
!
137
nn0p1nn
⊢
N
∈
ℕ
0
→
N
+
1
∈
ℕ
138
137
0expd
⊢
N
∈
ℕ
0
→
0
N
+
1
=
0
139
0exp0e1
⊢
0
0
=
1
140
139
oveq1i
⊢
0
0
N
!
=
1
N
!
141
134
nncnd
⊢
N
∈
ℕ
0
→
N
!
∈
ℂ
142
141
mullidd
⊢
N
∈
ℕ
0
→
1
N
!
=
N
!
143
140
142
eqtrid
⊢
N
∈
ℕ
0
→
0
0
N
!
=
N
!
144
136
138
143
3brtr4d
⊢
N
∈
ℕ
0
→
0
N
+
1
≤
0
0
N
!
145
oveq1
⊢
M
=
0
→
M
N
+
1
=
0
N
+
1
146
oveq12
⊢
M
=
0
∧
M
=
0
→
M
M
=
0
0
147
146
anidms
⊢
M
=
0
→
M
M
=
0
0
148
147
oveq1d
⊢
M
=
0
→
M
M
N
!
=
0
0
N
!
149
145
148
breq12d
⊢
M
=
0
→
M
N
+
1
≤
M
M
N
!
↔
0
N
+
1
≤
0
0
N
!
150
144
149
imbitrrid
⊢
M
=
0
→
N
∈
ℕ
0
→
M
N
+
1
≤
M
M
N
!
151
150
imp
⊢
M
=
0
∧
N
∈
ℕ
0
→
M
N
+
1
≤
M
M
N
!
152
133
151
jaoian
⊢
M
∈
ℕ
∨
M
=
0
∧
N
∈
ℕ
0
→
M
N
+
1
≤
M
M
N
!
153
1
152
sylanb
⊢
M
∈
ℕ
0
∧
N
∈
ℕ
0
→
M
N
+
1
≤
M
M
N
!