Metamath Proof Explorer


Theorem fllog2

Description: The floor of the binary logarithm of 2 to the power of an element of a half-open integer interval bounded by powers of 2 is equal to the integer. (Contributed by AV, 31-May-2020)

Ref Expression
Assertion fllog2 I0N2I..^2I+1log2N=I

Proof

Step Hyp Ref Expression
1 nn0z I0I
2 1 adantr I0N2I..^2I+1I
3 2rp 2+
4 elfzoelz N2I..^2I+1N
5 4 zred N2I..^2I+1N
6 5 adantl I0N2I..^2I+1N
7 elfzo2 N2I..^2I+1N2I2I+1N<2I+1
8 eluz2 N2I2IN2IN
9 2re 2
10 2pos 0<2
11 10 a1i I00<2
12 expgt0 2I0<20<2I
13 9 1 11 12 mp3an2i I00<2I
14 13 adantl 2INI00<2I
15 0red 2INI00
16 zre 2I2I
17 16 adantr 2IN2I
18 17 adantr 2INI02I
19 zre NN
20 19 ad2antlr 2INI0N
21 ltletr 02IN0<2I2IN0<N
22 15 18 20 21 syl3anc 2INI00<2I2IN0<N
23 14 22 mpand 2INI02IN0<N
24 23 ex 2INI02IN0<N
25 24 com23 2IN2INI00<N
26 25 3impia 2IN2INI00<N
27 8 26 sylbi N2II00<N
28 27 3ad2ant1 N2I2I+1N<2I+1I00<N
29 7 28 sylbi N2I..^2I+1I00<N
30 29 impcom I0N2I..^2I+10<N
31 6 30 elrpd I0N2I..^2I+1N+
32 1ne2 12
33 32 necomi 21
34 33 a1i I0N2I..^2I+121
35 relogbcl 2+N+21log2N
36 3 31 34 35 mp3an2i I0N2I..^2I+1log2N
37 36 flcld I0N2I..^2I+1log2N
38 eluzelz N2IN
39 zltlem1 N2I+1N<2I+1N2I+11
40 38 39 sylan N2I2I+1N<2I+1N2I+11
41 2z 2
42 uzid 222
43 41 42 ax-mp 22
44 eluzelre N2IN
45 44 adantr N2II0N
46 9 a1i I02
47 46 1 11 3jca I02I0<2
48 47 3ad2ant3 2INI02I0<2
49 48 12 syl 2INI00<2I
50 0red 2INI00
51 16 3ad2ant1 2INI02I
52 19 3ad2ant2 2INI0N
53 50 51 52 21 syl3anc 2INI00<2I2IN0<N
54 49 53 mpand 2INI02IN0<N
55 54 3exp 2INI02IN0<N
56 55 com34 2IN2INI00<N
57 56 3imp 2IN2INI00<N
58 8 57 sylbi N2II00<N
59 58 imp N2II00<N
60 45 59 elrpd N2II0N+
61 60 adantlr N2I2I+1I0N+
62 9 a1i N2I2I+1I02
63 peano2nn0 I0I+10
64 63 adantl N2I2I+1I0I+10
65 62 64 reexpcld N2I2I+1I02I+1
66 peano2rem 2I+12I+11
67 65 66 syl N2I2I+1I02I+11
68 nn0p1nn I0I+1
69 1lt2 1<2
70 69 a1i I01<2
71 46 68 70 3jca I02I+11<2
72 71 adantl N2I2I+1I02I+11<2
73 expgt1 2I+11<21<2I+1
74 72 73 syl N2I2I+1I01<2I+1
75 1red N2I2I+1I01
76 zre 2I+12I+1
77 76 ad2antlr N2I2I+1I02I+1
78 75 77 posdifd N2I2I+1I01<2I+10<2I+11
79 74 78 mpbid N2I2I+1I00<2I+11
80 67 79 elrpd N2I2I+1I02I+11+
81 logbleb 22N+2I+11+N2I+11log2Nlog22I+11
82 43 61 80 81 mp3an2i N2I2I+1I0N2I+11log2Nlog22I+11
83 44 adantr N2I2I+1N
84 83 adantr N2I2I+1I0N
85 59 adantlr N2I2I+1I00<N
86 84 85 elrpd N2I2I+1I0N+
87 33 a1i N2I2I+1I021
88 3 86 87 35 mp3an2i N2I2I+1I0log2N
89 88 adantr N2I2I+1I0log2Nlog22I+11log2N
90 43 a1i I022
91 46 63 reexpcld I02I+1
92 91 66 syl I02I+11
93 9 68 70 73 mp3an2i I01<2I+1
94 1red I01
95 94 91 posdifd I01<2I+10<2I+11
96 93 95 mpbid I00<2I+11
97 92 96 elrpd I02I+11+
98 90 97 jca I0222I+11+
99 98 adantl N2I2I+1I0222I+11+
100 relogbzcl 222I+11+log22I+11
101 99 100 syl N2I2I+1I0log22I+11
102 101 adantr N2I2I+1I0log2Nlog22I+11log22I+11
103 simpr N2I2I+1I0log2Nlog22I+11log2Nlog22I+11
104 flwordi log2Nlog22I+11log2Nlog22I+11log2Nlog22I+11
105 89 102 103 104 syl3anc N2I2I+1I0log2Nlog22I+11log2Nlog22I+11
106 105 ex N2I2I+1I0log2Nlog22I+11log2Nlog22I+11
107 68 adantl N2I2I+1I0I+1
108 logbpw2m1 I+1log22I+11=I+1-1
109 107 108 syl N2I2I+1I0log22I+11=I+1-1
110 nn0cn I0I
111 pncan1 II+1-1=I
112 110 111 syl I0I+1-1=I
113 112 adantl N2I2I+1I0I+1-1=I
114 109 113 eqtrd N2I2I+1I0log22I+11=I
115 114 breq2d N2I2I+1I0log2Nlog22I+11log2NI
116 106 115 sylibd N2I2I+1I0log2Nlog22I+11log2NI
117 82 116 sylbid N2I2I+1I0N2I+11log2NI
118 117 ex N2I2I+1I0N2I+11log2NI
119 118 com23 N2I2I+1N2I+11I0log2NI
120 40 119 sylbid N2I2I+1N<2I+1I0log2NI
121 120 3impia N2I2I+1N<2I+1I0log2NI
122 7 121 sylbi N2I..^2I+1I0log2NI
123 122 impcom I0N2I..^2I+1log2NI
124 nn0re I0I
125 nn0ge0 I00I
126 flge0nn0 I0II0
127 124 125 126 syl2anc I0I0
128 127 nn0red I0I
129 128 adantr I0N2I..^2I+1I
130 124 adantr I0N2I..^2I+1I
131 flle III
132 124 131 syl I0II
133 132 adantr I0N2I..^2I+1II
134 3 a1i I02+
135 134 1 rpexpcld I02I+
136 33 a1i I021
137 relogbcl 2+2I+21log22I
138 3 135 136 137 mp3an2i I0log22I
139 138 adantr I0N2I..^2I+1log22I
140 nnlogbexp 22Ilog22I=I
141 90 1 140 syl2anc I0log22I=I
142 141 eqcomd I0I=log22I
143 124 142 eqled I0Ilog22I
144 143 adantr I0N2I..^2I+1Ilog22I
145 elfzole1 N2I..^2I+12IN
146 145 adantl I0N2I..^2I+12IN
147 135 adantr I0N2I..^2I+12I+
148 logbleb 222I+N+2INlog22Ilog2N
149 43 147 31 148 mp3an2i I0N2I..^2I+12INlog22Ilog2N
150 146 149 mpbid I0N2I..^2I+1log22Ilog2N
151 130 139 36 144 150 letrd I0N2I..^2I+1Ilog2N
152 129 130 36 133 151 letrd I0N2I..^2I+1Ilog2N
153 flflp1 Ilog2NIlog2NI<log2N+1
154 130 36 153 syl2anc I0N2I..^2I+1Ilog2NI<log2N+1
155 152 154 mpbid I0N2I..^2I+1I<log2N+1
156 zgeltp1eq Ilog2Nlog2NII<log2N+1I=log2N
157 156 imp Ilog2Nlog2NII<log2N+1I=log2N
158 2 37 123 155 157 syl22anc I0N2I..^2I+1I=log2N
159 158 eqcomd I0N2I..^2I+1log2N=I