| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fnessref.1 |  | 
						
							| 2 |  | fnessref.2 |  | 
						
							| 3 |  | fnerel |  | 
						
							| 4 | 3 | brrelex2i |  | 
						
							| 5 | 4 | adantl |  | 
						
							| 6 |  | rabexg |  | 
						
							| 7 | 5 6 | syl |  | 
						
							| 8 |  | ssrab2 |  | 
						
							| 9 | 8 | a1i |  | 
						
							| 10 | 1 | eleq2i |  | 
						
							| 11 |  | eluni |  | 
						
							| 12 | 10 11 | bitri |  | 
						
							| 13 |  | fnessex |  | 
						
							| 14 | 13 | 3expia |  | 
						
							| 15 | 14 | adantll |  | 
						
							| 16 |  | sseq2 |  | 
						
							| 17 | 16 | rspcev |  | 
						
							| 18 | 17 | ex |  | 
						
							| 19 | 18 | adantl |  | 
						
							| 20 | 19 | anim2d |  | 
						
							| 21 | 20 | reximdv |  | 
						
							| 22 | 15 21 | syld |  | 
						
							| 23 | 22 | ex |  | 
						
							| 24 | 23 | com23 |  | 
						
							| 25 | 24 | impd |  | 
						
							| 26 | 25 | exlimdv |  | 
						
							| 27 | 12 26 | biimtrid |  | 
						
							| 28 |  | elunirab |  | 
						
							| 29 | 27 28 | imbitrrdi |  | 
						
							| 30 | 29 | ssrdv |  | 
						
							| 31 | 8 | unissi |  | 
						
							| 32 |  | simpl |  | 
						
							| 33 | 32 2 | eqtr2di |  | 
						
							| 34 | 31 33 | sseqtrid |  | 
						
							| 35 | 30 34 | eqssd |  | 
						
							| 36 |  | fnessex |  | 
						
							| 37 | 36 | 3expb |  | 
						
							| 38 | 37 | adantll |  | 
						
							| 39 |  | simpl |  | 
						
							| 40 | 39 | a1i |  | 
						
							| 41 |  | sseq2 |  | 
						
							| 42 | 41 | rspcev |  | 
						
							| 43 | 42 | expcom |  | 
						
							| 44 | 43 | ad2antll |  | 
						
							| 45 | 44 | com12 |  | 
						
							| 46 | 45 | ad2antrl |  | 
						
							| 47 | 40 46 | jcad |  | 
						
							| 48 |  | sseq1 |  | 
						
							| 49 | 48 | rexbidv |  | 
						
							| 50 | 49 | elrab |  | 
						
							| 51 | 47 50 | imbitrrdi |  | 
						
							| 52 |  | simpr |  | 
						
							| 53 | 52 | a1i |  | 
						
							| 54 | 51 53 | jcad |  | 
						
							| 55 | 54 | reximdv2 |  | 
						
							| 56 | 38 55 | mpd |  | 
						
							| 57 | 56 | ralrimivva |  | 
						
							| 58 |  | eqid |  | 
						
							| 59 | 1 58 | isfne2 |  | 
						
							| 60 | 5 6 59 | 3syl |  | 
						
							| 61 | 35 57 60 | mpbir2and |  | 
						
							| 62 |  | sseq1 |  | 
						
							| 63 | 62 | rexbidv |  | 
						
							| 64 | 63 | elrab |  | 
						
							| 65 |  | sseq2 |  | 
						
							| 66 | 65 | cbvrexvw |  | 
						
							| 67 | 66 | biimpi |  | 
						
							| 68 | 67 | adantl |  | 
						
							| 69 | 68 | a1i |  | 
						
							| 70 | 64 69 | biimtrid |  | 
						
							| 71 | 70 | ralrimiv |  | 
						
							| 72 | 58 1 | isref |  | 
						
							| 73 | 5 6 72 | 3syl |  | 
						
							| 74 | 35 71 73 | mpbir2and |  | 
						
							| 75 | 9 61 74 | jca32 |  | 
						
							| 76 |  | sseq1 |  | 
						
							| 77 |  | breq2 |  | 
						
							| 78 |  | breq1 |  | 
						
							| 79 | 77 78 | anbi12d |  | 
						
							| 80 | 76 79 | anbi12d |  | 
						
							| 81 | 80 | spcegv |  | 
						
							| 82 | 7 75 81 | sylc |  | 
						
							| 83 | 82 | ex |  | 
						
							| 84 |  | simprrl |  | 
						
							| 85 |  | eqid |  | 
						
							| 86 | 1 85 | fnebas |  | 
						
							| 87 | 84 86 | syl |  | 
						
							| 88 |  | simpl |  | 
						
							| 89 | 87 88 | eqtr3d |  | 
						
							| 90 | 89 2 | eqtrdi |  | 
						
							| 91 |  | vuniex |  | 
						
							| 92 | 90 91 | eqeltrrdi |  | 
						
							| 93 |  | uniexb |  | 
						
							| 94 | 92 93 | sylibr |  | 
						
							| 95 |  | simprl |  | 
						
							| 96 | 85 2 | fness |  | 
						
							| 97 | 94 95 89 96 | syl3anc |  | 
						
							| 98 |  | fnetr |  | 
						
							| 99 | 84 97 98 | syl2anc |  | 
						
							| 100 | 99 | ex |  | 
						
							| 101 | 100 | exlimdv |  | 
						
							| 102 | 83 101 | impbid |  |