Metamath Proof Explorer


Theorem fnessref

Description: A cover is finer iff it has a subcover which is both finer and a refinement. (Contributed by Jeff Hankins, 18-Jan-2010) (Revised by Thierry Arnoux, 3-Feb-2020)

Ref Expression
Hypotheses fnessref.1 X=A
fnessref.2 Y=B
Assertion fnessref X=YAFneBccBAFneccRefA

Proof

Step Hyp Ref Expression
1 fnessref.1 X=A
2 fnessref.2 Y=B
3 fnerel RelFne
4 3 brrelex2i AFneBBV
5 4 adantl X=YAFneBBV
6 rabexg BVxB|yAxyV
7 5 6 syl X=YAFneBxB|yAxyV
8 ssrab2 xB|yAxyB
9 8 a1i X=YAFneBxB|yAxyB
10 1 eleq2i tXtA
11 eluni tAztzzA
12 10 11 bitri tXztzzA
13 fnessex AFneBzAtzxBtxxz
14 13 3expia AFneBzAtzxBtxxz
15 14 adantll X=YAFneBzAtzxBtxxz
16 sseq2 y=zxyxz
17 16 rspcev zAxzyAxy
18 17 ex zAxzyAxy
19 18 adantl X=YAFneBzAxzyAxy
20 19 anim2d X=YAFneBzAtxxztxyAxy
21 20 reximdv X=YAFneBzAxBtxxzxBtxyAxy
22 15 21 syld X=YAFneBzAtzxBtxyAxy
23 22 ex X=YAFneBzAtzxBtxyAxy
24 23 com23 X=YAFneBtzzAxBtxyAxy
25 24 impd X=YAFneBtzzAxBtxyAxy
26 25 exlimdv X=YAFneBztzzAxBtxyAxy
27 12 26 biimtrid X=YAFneBtXxBtxyAxy
28 elunirab txB|yAxyxBtxyAxy
29 27 28 syl6ibr X=YAFneBtXtxB|yAxy
30 29 ssrdv X=YAFneBXxB|yAxy
31 8 unissi xB|yAxyB
32 simpl X=YAFneBX=Y
33 32 2 eqtr2di X=YAFneBB=X
34 31 33 sseqtrid X=YAFneBxB|yAxyX
35 30 34 eqssd X=YAFneBX=xB|yAxy
36 fnessex AFneBzAtzwBtwwz
37 36 3expb AFneBzAtzwBtwwz
38 37 adantll X=YAFneBzAtzwBtwwz
39 simpl wBtwwzwB
40 39 a1i X=YAFneBzAtzwBtwwzwB
41 sseq2 y=zwywz
42 41 rspcev zAwzyAwy
43 42 expcom wzzAyAwy
44 43 ad2antll wBtwwzzAyAwy
45 44 com12 zAwBtwwzyAwy
46 45 ad2antrl X=YAFneBzAtzwBtwwzyAwy
47 40 46 jcad X=YAFneBzAtzwBtwwzwByAwy
48 sseq1 x=wxywy
49 48 rexbidv x=wyAxyyAwy
50 49 elrab wxB|yAxywByAwy
51 47 50 syl6ibr X=YAFneBzAtzwBtwwzwxB|yAxy
52 simpr wBtwwztwwz
53 52 a1i X=YAFneBzAtzwBtwwztwwz
54 51 53 jcad X=YAFneBzAtzwBtwwzwxB|yAxytwwz
55 54 reximdv2 X=YAFneBzAtzwBtwwzwxB|yAxytwwz
56 38 55 mpd X=YAFneBzAtzwxB|yAxytwwz
57 56 ralrimivva X=YAFneBzAtzwxB|yAxytwwz
58 eqid xB|yAxy=xB|yAxy
59 1 58 isfne2 xB|yAxyVAFnexB|yAxyX=xB|yAxyzAtzwxB|yAxytwwz
60 5 6 59 3syl X=YAFneBAFnexB|yAxyX=xB|yAxyzAtzwxB|yAxytwwz
61 35 57 60 mpbir2and X=YAFneBAFnexB|yAxy
62 sseq1 x=zxyzy
63 62 rexbidv x=zyAxyyAzy
64 63 elrab zxB|yAxyzByAzy
65 sseq2 y=wzyzw
66 65 cbvrexvw yAzywAzw
67 66 biimpi yAzywAzw
68 67 adantl zByAzywAzw
69 68 a1i X=YAFneBzByAzywAzw
70 64 69 biimtrid X=YAFneBzxB|yAxywAzw
71 70 ralrimiv X=YAFneBzxB|yAxywAzw
72 58 1 isref xB|yAxyVxB|yAxyRefAX=xB|yAxyzxB|yAxywAzw
73 5 6 72 3syl X=YAFneBxB|yAxyRefAX=xB|yAxyzxB|yAxywAzw
74 35 71 73 mpbir2and X=YAFneBxB|yAxyRefA
75 9 61 74 jca32 X=YAFneBxB|yAxyBAFnexB|yAxyxB|yAxyRefA
76 sseq1 c=xB|yAxycBxB|yAxyB
77 breq2 c=xB|yAxyAFnecAFnexB|yAxy
78 breq1 c=xB|yAxycRefAxB|yAxyRefA
79 77 78 anbi12d c=xB|yAxyAFneccRefAAFnexB|yAxyxB|yAxyRefA
80 76 79 anbi12d c=xB|yAxycBAFneccRefAxB|yAxyBAFnexB|yAxyxB|yAxyRefA
81 80 spcegv xB|yAxyVxB|yAxyBAFnexB|yAxyxB|yAxyRefAccBAFneccRefA
82 7 75 81 sylc X=YAFneBccBAFneccRefA
83 82 ex X=YAFneBccBAFneccRefA
84 simprrl X=YcBAFneccRefAAFnec
85 eqid c=c
86 1 85 fnebas AFnecX=c
87 84 86 syl X=YcBAFneccRefAX=c
88 simpl X=YcBAFneccRefAX=Y
89 87 88 eqtr3d X=YcBAFneccRefAc=Y
90 89 2 eqtrdi X=YcBAFneccRefAc=B
91 vuniex cV
92 90 91 eqeltrrdi X=YcBAFneccRefABV
93 uniexb BVBV
94 92 93 sylibr X=YcBAFneccRefABV
95 simprl X=YcBAFneccRefAcB
96 85 2 fness BVcBc=YcFneB
97 94 95 89 96 syl3anc X=YcBAFneccRefAcFneB
98 fnetr AFneccFneBAFneB
99 84 97 98 syl2anc X=YcBAFneccRefAAFneB
100 99 ex X=YcBAFneccRefAAFneB
101 100 exlimdv X=YccBAFneccRefAAFneB
102 83 101 impbid X=YAFneBccBAFneccRefA