Metamath Proof Explorer


Theorem frfi

Description: A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010) (Proof shortened by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion frfi RPoAAFinRFrA

Proof

Step Hyp Ref Expression
1 poeq2 x=RPoxRPo
2 freq2 x=RFrxRFr
3 1 2 imbi12d x=RPoxRFrxRPoRFr
4 poeq2 x=yRPoxRPoy
5 freq2 x=yRFrxRFry
6 4 5 imbi12d x=yRPoxRFrxRPoyRFry
7 poeq2 x=ywRPoxRPoyw
8 freq2 x=ywRFrxRFryw
9 7 8 imbi12d x=ywRPoxRFrxRPoywRFryw
10 poeq2 x=ARPoxRPoA
11 freq2 x=ARFrxRFrA
12 10 11 imbi12d x=ARPoxRFrxRPoARFrA
13 fr0 RFr
14 13 a1i RPoRFr
15 ssun1 yyw
16 poss yywRPoywRPoy
17 15 16 ax-mp RPoywRPoy
18 17 imim1i RPoyRFryRPoywRFry
19 uncom yw=wy
20 19 sseq2i xywxwy
21 ssundif xwyxwy
22 20 21 bitri xywxwy
23 22 anbi1i xywxxwyx
24 breq1 v=zvRwzRw
25 24 cbvrexvw vxvRwzxzRw
26 simpllr RPoywRFryxwyxzxzRwwxRFry
27 simplrl RPoywRFryxwyxzxzRwwxxwy
28 poss xywRPoywRPox
29 28 impcom RPoywxywRPox
30 22 29 sylan2br RPoywxwyRPox
31 30 ad2ant2r RPoywRFryxwyxRPox
32 simpr1 RPoxzxzRwwxzx
33 simpr2 RPoxzxzRwwxzRw
34 poirr RPoxwx¬wRw
35 34 3ad2antr3 RPoxzxzRwwx¬wRw
36 nbrne2 zRw¬wRwzw
37 33 35 36 syl2anc RPoxzxzRwwxzw
38 eldifsn zxwzxzw
39 32 37 38 sylanbrc RPoxzxzRwwxzxw
40 31 39 sylan RPoywRFryxwyxzxzRwwxzxw
41 40 ne0d RPoywRFryxwyxzxzRwwxxw
42 difss xwx
43 vex xV
44 43 difexi xwV
45 fri xwVRFryxwyxwuxwvxw¬vRu
46 44 45 mpanl1 RFryxwyxwuxwvxw¬vRu
47 ssrexv xwxuxwvxw¬vRuuxvxw¬vRu
48 42 46 47 mpsyl RFryxwyxwuxvxw¬vRu
49 26 27 41 48 syl12anc RPoywRFryxwyxzxzRwwxuxvxw¬vRu
50 breq1 v=zvRuzRu
51 50 notbid v=z¬vRu¬zRu
52 51 rspcv zxwvxw¬vRu¬zRu
53 39 52 syl RPoxzxzRwwxvxw¬vRu¬zRu
54 53 adantr RPoxzxzRwwxuxvxw¬vRu¬zRu
55 simplr2 RPoxzxzRwwxuxzRw
56 simpll RPoxzxzRwwxuxRPox
57 simplr1 RPoxzxzRwwxuxzx
58 simplr3 RPoxzxzRwwxuxwx
59 simpr RPoxzxzRwwxuxux
60 potr RPoxzxwxuxzRwwRuzRu
61 56 57 58 59 60 syl13anc RPoxzxzRwwxuxzRwwRuzRu
62 55 61 mpand RPoxzxzRwwxuxwRuzRu
63 62 con3d RPoxzxzRwwxux¬zRu¬wRu
64 vex wV
65 breq1 v=wvRuwRu
66 65 notbid v=w¬vRu¬wRu
67 64 66 ralsn vw¬vRu¬wRu
68 63 67 syl6ibr RPoxzxzRwwxux¬zRuvw¬vRu
69 54 68 syld RPoxzxzRwwxuxvxw¬vRuvw¬vRu
70 ralun vxw¬vRuvw¬vRuvxww¬vRu
71 70 ex vxw¬vRuvw¬vRuvxww¬vRu
72 69 71 sylcom RPoxzxzRwwxuxvxw¬vRuvxww¬vRu
73 difsnid wxxww=x
74 73 raleqdv wxvxww¬vRuvx¬vRu
75 58 74 syl RPoxzxzRwwxuxvxww¬vRuvx¬vRu
76 72 75 sylibd RPoxzxzRwwxuxvxw¬vRuvx¬vRu
77 76 reximdva RPoxzxzRwwxuxvxw¬vRuuxvx¬vRu
78 31 77 sylan RPoywRFryxwyxzxzRwwxuxvxw¬vRuuxvx¬vRu
79 49 78 mpd RPoywRFryxwyxzxzRwwxuxvx¬vRu
80 79 3exp2 RPoywRFryxwyxzxzRwwxuxvx¬vRu
81 80 rexlimdv RPoywRFryxwyxzxzRwwxuxvx¬vRu
82 25 81 biimtrid RPoywRFryxwyxvxvRwwxuxvx¬vRu
83 ralnex vx¬vRw¬vxvRw
84 breq2 u=wvRuvRw
85 84 notbid u=w¬vRu¬vRw
86 85 ralbidv u=wvx¬vRuvx¬vRw
87 86 rspcev wxvx¬vRwuxvx¬vRu
88 87 expcom vx¬vRwwxuxvx¬vRu
89 83 88 sylbir ¬vxvRwwxuxvx¬vRu
90 82 89 pm2.61d1 RPoywRFryxwyxwxuxvx¬vRu
91 difsn ¬wxxw=x
92 48 expr RFryxwyxwuxvxw¬vRu
93 neeq1 xw=xxwx
94 raleq xw=xvxw¬vRuvx¬vRu
95 94 rexbidv xw=xuxvxw¬vRuuxvx¬vRu
96 93 95 imbi12d xw=xxwuxvxw¬vRuxuxvx¬vRu
97 92 96 syl5ibcom RFryxwyxw=xxuxvx¬vRu
98 97 com23 RFryxwyxxw=xuxvx¬vRu
99 98 adantll RPoywRFryxwyxxw=xuxvx¬vRu
100 99 impr RPoywRFryxwyxxw=xuxvx¬vRu
101 91 100 syl5 RPoywRFryxwyx¬wxuxvx¬vRu
102 90 101 pm2.61d RPoywRFryxwyxuxvx¬vRu
103 102 ex RPoywRFryxwyxuxvx¬vRu
104 23 103 biimtrid RPoywRFryxywxuxvx¬vRu
105 104 alrimiv RPoywRFryxxywxuxvx¬vRu
106 df-fr RFrywxxywxuxvx¬vRu
107 105 106 sylibr RPoywRFryRFryw
108 107 ex RPoywRFryRFryw
109 18 108 sylcom RPoyRFryRPoywRFryw
110 109 a1i yFinRPoyRFryRPoywRFryw
111 3 6 9 12 14 110 findcard2 AFinRPoARFrA
112 111 impcom RPoAAFinRFrA