Metamath Proof Explorer


Theorem gg-cmvth

Description: Cauchy's Mean Value Theorem. If F , G are real continuous functions on [ A , B ] differentiable on ( A , B ) , then there is some x e. ( A , B ) such that F ' ( x ) / G ' ( x ) = ( F ( A ) - F ( B ) ) / ( G ( A ) - G ( B ) ) . (We express the condition without division, so that we need no nonzero constraints.) (Contributed by Mario Carneiro, 29-Dec-2016) Use mpomulcn instead of mulcn as direct dependency. (Revised by GG, 16-Mar-2025)

Ref Expression
Hypotheses gg-cmvth.a φA
gg-cmvth.b φB
gg-cmvth.lt φA<B
gg-cmvth.f φF:ABcn
gg-cmvth.g φG:ABcn
gg-cmvth.df φdomF=AB
gg-cmvth.dg φdomG=AB
Assertion gg-cmvth φxABFBFAGx=GBGAFx

Proof

Step Hyp Ref Expression
1 gg-cmvth.a φA
2 gg-cmvth.b φB
3 gg-cmvth.lt φA<B
4 gg-cmvth.f φF:ABcn
5 gg-cmvth.g φG:ABcn
6 gg-cmvth.df φdomF=AB
7 gg-cmvth.dg φdomG=AB
8 eqid TopOpenfld=TopOpenfld
9 8 subcn TopOpenfld×tTopOpenfldCnTopOpenfld
10 cncff F:ABcnF:AB
11 4 10 syl φF:AB
12 1 rexrd φA*
13 2 rexrd φB*
14 1 2 3 ltled φAB
15 ubicc2 A*B*ABBAB
16 12 13 14 15 syl3anc φBAB
17 11 16 ffvelcdmd φFB
18 lbicc2 A*B*ABAAB
19 12 13 14 18 syl3anc φAAB
20 11 19 ffvelcdmd φFA
21 17 20 resubcld φFBFA
22 21 recnd φFBFA
23 22 adantr φzABFBFA
24 cncff G:ABcnG:AB
25 5 24 syl φG:AB
26 25 ffvelcdmda φzABGz
27 26 recnd φzABGz
28 ovmul FBFAGzFBFAu,vuvGz=FBFAGz
29 23 27 28 syl2anc φzABFBFAu,vuvGz=FBFAGz
30 29 eqeq2d φzABw=FBFAu,vuvGzw=FBFAGz
31 30 pm5.32da φzABw=FBFAu,vuvGzzABw=FBFAGz
32 31 opabbidv φzw|zABw=FBFAu,vuvGz=zw|zABw=FBFAGz
33 df-mpt zABFBFAGz=zw|zABw=FBFAGz
34 32 33 eqtr4di φzw|zABw=FBFAu,vuvGz=zABFBFAGz
35 df-mpt zABFBFAu,vuvGz=zw|zABw=FBFAu,vuvGz
36 8 mpomulcn u,vuvTopOpenfld×tTopOpenfldCnTopOpenfld
37 1 2 iccssred φAB
38 ax-resscn
39 37 38 sstrdi φAB
40 38 a1i φ
41 cncfmptc FBFAABzABFBFA:ABcn
42 21 39 40 41 syl3anc φzABFBFA:ABcn
43 25 feqmptd φG=zABGz
44 43 5 eqeltrrd φzABGz:ABcn
45 simpl FBFAGzFBFA
46 45 recnd FBFAGzFBFA
47 simpr FBFAGzGz
48 47 recnd FBFAGzGz
49 28 eqcomd FBFAGzFBFAGz=FBFAu,vuvGz
50 46 48 49 syl2anc FBFAGzFBFAGz=FBFAu,vuvGz
51 remulcl FBFAGzFBFAGz
52 50 51 eqeltrrd FBFAGzFBFAu,vuvGz
53 8 36 42 44 38 52 cncfmpt2ss φzABFBFAu,vuvGz:ABcn
54 35 53 eqeltrrid φzw|zABw=FBFAu,vuvGz:ABcn
55 34 54 eqeltrrd φzABFBFAGz:ABcn
56 25 16 ffvelcdmd φGB
57 25 19 ffvelcdmd φGA
58 56 57 resubcld φGBGA
59 58 adantr φzABGBGA
60 59 recnd φzABGBGA
61 11 ffvelcdmda φzABFz
62 61 recnd φzABFz
63 ovmul GBGAFzGBGAu,vuvFz=GBGAFz
64 60 62 63 syl2anc φzABGBGAu,vuvFz=GBGAFz
65 64 eqeq2d φzABw=GBGAu,vuvFzw=GBGAFz
66 65 pm5.32da φzABw=GBGAu,vuvFzzABw=GBGAFz
67 66 opabbidv φzw|zABw=GBGAu,vuvFz=zw|zABw=GBGAFz
68 df-mpt zABGBGAFz=zw|zABw=GBGAFz
69 67 68 eqtr4di φzw|zABw=GBGAu,vuvFz=zABGBGAFz
70 df-mpt zABGBGAu,vuvFz=zw|zABw=GBGAu,vuvFz
71 cncfmptc GBGAABzABGBGA:ABcn
72 58 39 40 71 syl3anc φzABGBGA:ABcn
73 11 feqmptd φF=zABFz
74 73 4 eqeltrrd φzABFz:ABcn
75 simpl GBGAFzGBGA
76 75 recnd GBGAFzGBGA
77 simpr GBGAFzFz
78 77 recnd GBGAFzFz
79 63 eqcomd GBGAFzGBGAFz=GBGAu,vuvFz
80 76 78 79 syl2anc GBGAFzGBGAFz=GBGAu,vuvFz
81 remulcl GBGAFzGBGAFz
82 80 81 eqeltrrd GBGAFzGBGAu,vuvFz
83 8 36 72 74 38 82 cncfmpt2ss φzABGBGAu,vuvFz:ABcn
84 70 83 eqeltrrid φzw|zABw=GBGAu,vuvFz:ABcn
85 69 84 eqeltrrd φzABGBGAFz:ABcn
86 resubcl FBFAGzGBGAFzFBFAGzGBGAFz
87 8 9 55 85 38 86 cncfmpt2ss φzABFBFAGzGBGAFz:ABcn
88 23 27 mulcld φzABFBFAGz
89 59 61 remulcld φzABGBGAFz
90 89 recnd φzABGBGAFz
91 88 90 subcld φzABFBFAGzGBGAFz
92 8 tgioo2 topGenran.=TopOpenfld𝑡
93 iccntr ABinttopGenran.AB=AB
94 1 2 93 syl2anc φinttopGenran.AB=AB
95 40 37 91 92 8 94 dvmptntr φdzABFBFAGzGBGAFzdz=dzABFBFAGzGBGAFzdz
96 reelprrecn
97 96 a1i φ
98 ioossicc ABAB
99 98 sseli zABzAB
100 99 88 sylan2 φzABFBFAGz
101 ovexd φzABFBFAGzV
102 99 27 sylan2 φzABGz
103 fvexd φzABGzV
104 43 oveq2d φDG=dzABGzdz
105 dvf G:domG
106 7 feq2d φG:domGG:AB
107 105 106 mpbii φG:AB
108 107 feqmptd φDG=zABGz
109 40 37 27 92 8 94 dvmptntr φdzABGzdz=dzABGzdz
110 104 108 109 3eqtr3rd φdzABGzdz=zABGz
111 97 102 103 110 22 dvmptcmul φdzABFBFAGzdz=zABFBFAGz
112 99 90 sylan2 φzABGBGAFz
113 ovexd φzABGBGAFzV
114 99 62 sylan2 φzABFz
115 fvexd φzABFzV
116 73 oveq2d φDF=dzABFzdz
117 dvf F:domF
118 6 feq2d φF:domFF:AB
119 117 118 mpbii φF:AB
120 119 feqmptd φDF=zABFz
121 40 37 62 92 8 94 dvmptntr φdzABFzdz=dzABFzdz
122 116 120 121 3eqtr3rd φdzABFzdz=zABFz
123 58 recnd φGBGA
124 97 114 115 122 123 dvmptcmul φdzABGBGAFzdz=zABGBGAFz
125 97 100 101 111 112 113 124 dvmptsub φdzABFBFAGzGBGAFzdz=zABFBFAGzGBGAFz
126 95 125 eqtrd φdzABFBFAGzGBGAFzdz=zABFBFAGzGBGAFz
127 126 dmeqd φdomdzABFBFAGzGBGAFzdz=domzABFBFAGzGBGAFz
128 ovex FBFAGzGBGAFzV
129 eqid zABFBFAGzGBGAFz=zABFBFAGzGBGAFz
130 128 129 dmmpti domzABFBFAGzGBGAFz=AB
131 127 130 eqtrdi φdomdzABFBFAGzGBGAFzdz=AB
132 17 recnd φFB
133 57 recnd φGA
134 132 133 mulcld φFBGA
135 20 recnd φFA
136 56 recnd φGB
137 135 136 mulcld φFAGB
138 135 133 mulcld φFAGA
139 134 137 138 nnncan2d φFBGA-FAGA-FAGBFAGA=FBGAFAGB
140 132 136 mulcld φFBGB
141 140 137 134 nnncan1d φFBGB-FAGB-FBGBFBGA=FBGAFAGB
142 139 141 eqtr4d φFBGA-FAGA-FAGBFAGA=FBGB-FAGB-FBGBFBGA
143 132 135 133 subdird φFBFAGA=FBGAFAGA
144 123 135 mulcomd φGBGAFA=FAGBGA
145 135 136 133 subdid φFAGBGA=FAGBFAGA
146 144 145 eqtrd φGBGAFA=FAGBFAGA
147 143 146 oveq12d φFBFAGAGBGAFA=FBGA-FAGA-FAGBFAGA
148 132 135 136 subdird φFBFAGB=FBGBFAGB
149 123 132 mulcomd φGBGAFB=FBGBGA
150 132 136 133 subdid φFBGBGA=FBGBFBGA
151 149 150 eqtrd φGBGAFB=FBGBFBGA
152 148 151 oveq12d φFBFAGBGBGAFB=FBGB-FAGB-FBGBFBGA
153 142 147 152 3eqtr4d φFBFAGAGBGAFA=FBFAGBGBGAFB
154 fveq2 z=AGz=GA
155 154 oveq2d z=AFBFAGz=FBFAGA
156 fveq2 z=AFz=FA
157 156 oveq2d z=AGBGAFz=GBGAFA
158 155 157 oveq12d z=AFBFAGzGBGAFz=FBFAGAGBGAFA
159 eqid zABFBFAGzGBGAFz=zABFBFAGzGBGAFz
160 ovex FBFAGzGBGAFzV
161 158 159 160 fvmpt3i AABzABFBFAGzGBGAFzA=FBFAGAGBGAFA
162 19 161 syl φzABFBFAGzGBGAFzA=FBFAGAGBGAFA
163 fveq2 z=BGz=GB
164 163 oveq2d z=BFBFAGz=FBFAGB
165 fveq2 z=BFz=FB
166 165 oveq2d z=BGBGAFz=GBGAFB
167 164 166 oveq12d z=BFBFAGzGBGAFz=FBFAGBGBGAFB
168 167 159 160 fvmpt3i BABzABFBFAGzGBGAFzB=FBFAGBGBGAFB
169 16 168 syl φzABFBFAGzGBGAFzB=FBFAGBGBGAFB
170 153 162 169 3eqtr4d φzABFBFAGzGBGAFzA=zABFBFAGzGBGAFzB
171 1 2 3 87 131 170 rolle φxABdzABFBFAGzGBGAFzdzx=0
172 126 fveq1d φdzABFBFAGzGBGAFzdzx=zABFBFAGzGBGAFzx
173 fveq2 z=xGz=Gx
174 173 oveq2d z=xFBFAGz=FBFAGx
175 fveq2 z=xFz=Fx
176 175 oveq2d z=xGBGAFz=GBGAFx
177 174 176 oveq12d z=xFBFAGzGBGAFz=FBFAGxGBGAFx
178 177 129 128 fvmpt3i xABzABFBFAGzGBGAFzx=FBFAGxGBGAFx
179 172 178 sylan9eq φxABdzABFBFAGzGBGAFzdzx=FBFAGxGBGAFx
180 179 eqeq1d φxABdzABFBFAGzGBGAFzdzx=0FBFAGxGBGAFx=0
181 22 adantr φxABFBFA
182 107 ffvelcdmda φxABGx
183 181 182 mulcld φxABFBFAGx
184 123 adantr φxABGBGA
185 119 ffvelcdmda φxABFx
186 184 185 mulcld φxABGBGAFx
187 183 186 subeq0ad φxABFBFAGxGBGAFx=0FBFAGx=GBGAFx
188 180 187 bitrd φxABdzABFBFAGzGBGAFzdzx=0FBFAGx=GBGAFx
189 188 rexbidva φxABdzABFBFAGzGBGAFzdzx=0xABFBFAGx=GBGAFx
190 171 189 mpbid φxABFBFAGx=GBGAFx