| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsummatr01.p |  | 
						
							| 2 |  | gsummatr01.r |  | 
						
							| 3 |  | gsummatr01.0 |  | 
						
							| 4 |  | gsummatr01.s |  | 
						
							| 5 |  | difsnid |  | 
						
							| 6 | 5 | eqcomd |  | 
						
							| 7 | 6 | 3ad2ant1 |  | 
						
							| 8 | 7 | 3ad2ant3 |  | 
						
							| 9 | 8 | mpteq1d |  | 
						
							| 10 | 9 | oveq2d |  | 
						
							| 11 | 1 2 3 4 | gsummatr01lem3 |  | 
						
							| 12 |  | eqidd |  | 
						
							| 13 |  | fveq1 |  | 
						
							| 14 | 13 | eqeq1d |  | 
						
							| 15 | 14 2 | elrab2 |  | 
						
							| 16 |  | eqeq2 |  | 
						
							| 17 | 16 | adantl |  | 
						
							| 18 | 17 | anbi2d |  | 
						
							| 19 | 15 18 | sylbi |  | 
						
							| 20 | 19 | 3ad2ant3 |  | 
						
							| 21 |  | iftrue |  | 
						
							| 22 |  | iftrue |  | 
						
							| 23 | 21 22 | sylan9eq |  | 
						
							| 24 | 20 23 | biimtrdi |  | 
						
							| 25 | 24 | imp |  | 
						
							| 26 |  | simp1 |  | 
						
							| 27 | 1 2 | gsummatr01lem1 |  | 
						
							| 28 | 27 | ancoms |  | 
						
							| 29 | 28 | 3adant2 |  | 
						
							| 30 | 3 | fvexi |  | 
						
							| 31 | 30 | a1i |  | 
						
							| 32 | 12 25 26 29 31 | ovmpod |  | 
						
							| 33 | 32 | 3ad2ant3 |  | 
						
							| 34 | 33 | oveq2d |  | 
						
							| 35 |  | cmnmnd |  | 
						
							| 36 | 35 | adantr |  | 
						
							| 37 | 36 | 3ad2ant1 |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 |  | simp1l |  | 
						
							| 40 |  | diffi |  | 
						
							| 41 | 40 | adantl |  | 
						
							| 42 | 41 | 3ad2ant1 |  | 
						
							| 43 |  | eqidd |  | 
						
							| 44 |  | eqeq1 |  | 
						
							| 45 | 44 | adantr |  | 
						
							| 46 |  | eqeq1 |  | 
						
							| 47 | 46 | ifbid |  | 
						
							| 48 | 47 | adantl |  | 
						
							| 49 |  | oveq12 |  | 
						
							| 50 | 45 48 49 | ifbieq12d |  | 
						
							| 51 |  | eldifsni |  | 
						
							| 52 | 51 | neneqd |  | 
						
							| 53 | 52 | iffalsed |  | 
						
							| 54 | 53 | adantl |  | 
						
							| 55 | 50 54 | sylan9eqr |  | 
						
							| 56 |  | eldifi |  | 
						
							| 57 | 56 | adantl |  | 
						
							| 58 |  | simp3 |  | 
						
							| 59 | 1 2 | gsummatr01lem1 |  | 
						
							| 60 | 58 56 59 | syl2an |  | 
						
							| 61 |  | ovexd |  | 
						
							| 62 | 43 55 57 60 61 | ovmpod |  | 
						
							| 63 | 62 | 3ad2antl3 |  | 
						
							| 64 | 4 | eleq2i |  | 
						
							| 65 | 64 | 2ralbii |  | 
						
							| 66 | 1 2 | gsummatr01lem2 |  | 
						
							| 67 | 65 66 | biimtrid |  | 
						
							| 68 | 58 56 67 | syl2anr |  | 
						
							| 69 | 68 | ex |  | 
						
							| 70 | 69 | com13 |  | 
						
							| 71 | 70 | adantr |  | 
						
							| 72 | 71 | imp |  | 
						
							| 73 | 72 | 3adant1 |  | 
						
							| 74 | 73 | imp |  | 
						
							| 75 | 63 74 | eqeltrd |  | 
						
							| 76 | 75 | ralrimiva |  | 
						
							| 77 | 38 39 42 76 | gsummptcl |  | 
						
							| 78 |  | eqid |  | 
						
							| 79 | 38 78 3 | mndrid |  | 
						
							| 80 | 37 77 79 | syl2anc |  | 
						
							| 81 | 1 2 3 4 | gsummatr01lem4 |  | 
						
							| 82 | 81 | mpteq2dva |  | 
						
							| 83 | 82 | oveq2d |  | 
						
							| 84 | 34 80 83 | 3eqtrd |  | 
						
							| 85 | 10 11 84 | 3eqtrd |  |