Database
BASIC LINEAR ALGEBRA
The determinant
Laplace expansion of determinants (special case)
gsummatr01
Next ⟩
marep01ma
Metamath Proof Explorer
Ascii
Unicode
Theorem
gsummatr01
Description:
Lemma 1 for
smadiadetlem4
.
(Contributed by
AV
, 8-Jan-2019)
Ref
Expression
Hypotheses
gsummatr01.p
⊢
P
=
Base
SymGrp
N
gsummatr01.r
⊢
R
=
r
∈
P
|
r
K
=
L
gsummatr01.0
⊢
0
˙
=
0
G
gsummatr01.s
⊢
S
=
Base
G
Assertion
gsummatr01
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
∑
G
n
∈
N
∖
K
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n
Proof
Step
Hyp
Ref
Expression
1
gsummatr01.p
⊢
P
=
Base
SymGrp
N
2
gsummatr01.r
⊢
R
=
r
∈
P
|
r
K
=
L
3
gsummatr01.0
⊢
0
˙
=
0
G
4
gsummatr01.s
⊢
S
=
Base
G
5
difsnid
⊢
K
∈
N
→
N
∖
K
∪
K
=
N
6
5
eqcomd
⊢
K
∈
N
→
N
=
N
∖
K
∪
K
7
6
3ad2ant1
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
N
=
N
∖
K
∪
K
8
7
3ad2ant3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
N
=
N
∖
K
∪
K
9
8
mpteq1d
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
⟼
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
∈
N
∖
K
∪
K
⟼
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
10
9
oveq2d
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
∑
G
n
∈
N
∖
K
∪
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
11
1
2
3
4
gsummatr01lem3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
∪
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
12
eqidd
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
13
fveq1
⊢
r
=
Q
→
r
K
=
Q
K
14
13
eqeq1d
⊢
r
=
Q
→
r
K
=
L
↔
Q
K
=
L
15
14
2
elrab2
⊢
Q
∈
R
↔
Q
∈
P
∧
Q
K
=
L
16
eqeq2
⊢
Q
K
=
L
→
j
=
Q
K
↔
j
=
L
17
16
adantl
⊢
Q
∈
P
∧
Q
K
=
L
→
j
=
Q
K
↔
j
=
L
18
17
anbi2d
⊢
Q
∈
P
∧
Q
K
=
L
→
i
=
K
∧
j
=
Q
K
↔
i
=
K
∧
j
=
L
19
15
18
sylbi
⊢
Q
∈
R
→
i
=
K
∧
j
=
Q
K
↔
i
=
K
∧
j
=
L
20
19
3ad2ant3
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
i
=
K
∧
j
=
Q
K
↔
i
=
K
∧
j
=
L
21
iftrue
⊢
i
=
K
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
if
j
=
L
0
˙
B
22
iftrue
⊢
j
=
L
→
if
j
=
L
0
˙
B
=
0
˙
23
21
22
sylan9eq
⊢
i
=
K
∧
j
=
L
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
0
˙
24
20
23
syl6bi
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
i
=
K
∧
j
=
Q
K
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
0
˙
25
24
imp
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
i
=
K
∧
j
=
Q
K
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
0
˙
26
simp1
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
∈
N
27
1
2
gsummatr01lem1
⊢
Q
∈
R
∧
K
∈
N
→
Q
K
∈
N
28
27
ancoms
⊢
K
∈
N
∧
Q
∈
R
→
Q
K
∈
N
29
28
3adant2
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
Q
K
∈
N
30
3
fvexi
⊢
0
˙
∈
V
31
30
a1i
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
0
˙
∈
V
32
12
25
26
29
31
ovmpod
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
=
0
˙
33
32
3ad2ant3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
=
0
˙
34
33
oveq2d
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
=
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
0
˙
35
cmnmnd
⊢
G
∈
CMnd
→
G
∈
Mnd
36
35
adantr
⊢
G
∈
CMnd
∧
N
∈
Fin
→
G
∈
Mnd
37
36
3ad2ant1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
G
∈
Mnd
38
eqid
⊢
Base
G
=
Base
G
39
simp1l
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
G
∈
CMnd
40
diffi
⊢
N
∈
Fin
→
N
∖
K
∈
Fin
41
40
adantl
⊢
G
∈
CMnd
∧
N
∈
Fin
→
N
∖
K
∈
Fin
42
41
3ad2ant1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
N
∖
K
∈
Fin
43
eqidd
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
44
eqeq1
⊢
i
=
n
→
i
=
K
↔
n
=
K
45
44
adantr
⊢
i
=
n
∧
j
=
Q
n
→
i
=
K
↔
n
=
K
46
eqeq1
⊢
j
=
Q
n
→
j
=
L
↔
Q
n
=
L
47
46
ifbid
⊢
j
=
Q
n
→
if
j
=
L
0
˙
B
=
if
Q
n
=
L
0
˙
B
48
47
adantl
⊢
i
=
n
∧
j
=
Q
n
→
if
j
=
L
0
˙
B
=
if
Q
n
=
L
0
˙
B
49
oveq12
⊢
i
=
n
∧
j
=
Q
n
→
i
A
j
=
n
A
Q
n
50
45
48
49
ifbieq12d
⊢
i
=
n
∧
j
=
Q
n
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
51
eldifsni
⊢
n
∈
N
∖
K
→
n
≠
K
52
51
neneqd
⊢
n
∈
N
∖
K
→
¬
n
=
K
53
52
iffalsed
⊢
n
∈
N
∖
K
→
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
=
n
A
Q
n
54
53
adantl
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
if
n
=
K
if
Q
n
=
L
0
˙
B
n
A
Q
n
=
n
A
Q
n
55
50
54
sylan9eqr
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
∧
i
=
n
∧
j
=
Q
n
→
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
=
n
A
Q
n
56
eldifi
⊢
n
∈
N
∖
K
→
n
∈
N
57
56
adantl
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
∈
N
58
simp3
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
Q
∈
R
59
1
2
gsummatr01lem1
⊢
Q
∈
R
∧
n
∈
N
→
Q
n
∈
N
60
58
56
59
syl2an
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
Q
n
∈
N
61
ovexd
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
A
Q
n
∈
V
62
43
55
57
60
61
ovmpod
⊢
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
63
62
3ad2antl3
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
A
Q
n
64
4
eleq2i
⊢
i
A
j
∈
S
↔
i
A
j
∈
Base
G
65
64
2ralbii
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
↔
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
66
1
2
gsummatr01lem2
⊢
Q
∈
R
∧
n
∈
N
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
Base
G
→
n
A
Q
n
∈
Base
G
67
65
66
biimtrid
⊢
Q
∈
R
∧
n
∈
N
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
→
n
A
Q
n
∈
Base
G
68
58
56
67
syl2anr
⊢
n
∈
N
∖
K
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
→
n
A
Q
n
∈
Base
G
69
68
ex
⊢
n
∈
N
∖
K
→
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
→
n
A
Q
n
∈
Base
G
70
69
com13
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
→
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
71
70
adantr
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
→
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
72
71
imp
⊢
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
73
72
3adant1
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
74
73
imp
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
A
Q
n
∈
Base
G
75
63
74
eqeltrd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
∈
Base
G
76
75
ralrimiva
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∀
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
∈
Base
G
77
38
39
42
76
gsummptcl
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
∈
Base
G
78
eqid
⊢
+
G
=
+
G
79
38
78
3
mndrid
⊢
G
∈
Mnd
∧
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
∈
Base
G
→
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
0
˙
=
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
80
37
77
79
syl2anc
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
0
˙
=
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
81
1
2
3
4
gsummatr01lem4
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
∧
n
∈
N
∖
K
→
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n
82
81
mpteq2dva
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
n
∈
N
∖
K
⟼
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
n
∈
N
∖
K
⟼
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n
83
82
oveq2d
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
∑
G
n
∈
N
∖
K
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n
84
34
80
83
3eqtrd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
∖
K
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
+
G
K
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
K
=
∑
G
n
∈
N
∖
K
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n
85
10
11
84
3eqtrd
⊢
G
∈
CMnd
∧
N
∈
Fin
∧
∀
i
∈
N
∀
j
∈
N
i
A
j
∈
S
∧
B
∈
S
∧
K
∈
N
∧
L
∈
N
∧
Q
∈
R
→
∑
G
n
∈
N
n
i
∈
N
,
j
∈
N
⟼
if
i
=
K
if
j
=
L
0
˙
B
i
A
j
Q
n
=
∑
G
n
∈
N
∖
K
n
i
∈
N
∖
K
,
j
∈
N
∖
L
⟼
i
A
j
Q
n