Metamath Proof Explorer


Theorem gsumval3lem2

Description: Lemma 2 for gsumval3 . (Contributed by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b B=BaseG
gsumval3.0 0˙=0G
gsumval3.p +˙=+G
gsumval3.z Z=CntzG
gsumval3.g φGMnd
gsumval3.a φAV
gsumval3.f φF:AB
gsumval3.c φranFZranF
gsumval3.m φM
gsumval3.h φH:1M1-1A
gsumval3.n φFsupp0˙ranH
gsumval3.w W=FHsupp0˙
Assertion gsumval3lem2 φW¬AranfIsom<,<1WWGF=seq1+˙FHfW

Proof

Step Hyp Ref Expression
1 gsumval3.b B=BaseG
2 gsumval3.0 0˙=0G
3 gsumval3.p +˙=+G
4 gsumval3.z Z=CntzG
5 gsumval3.g φGMnd
6 gsumval3.a φAV
7 gsumval3.f φF:AB
8 gsumval3.c φranFZranF
9 gsumval3.m φM
10 gsumval3.h φH:1M1-1A
11 gsumval3.n φFsupp0˙ranH
12 gsumval3.w W=FHsupp0˙
13 f1f H:1M1-1AH:1MA
14 10 13 syl φH:1MA
15 fzfid φ1MFin
16 14 15 fexd φHV
17 vex fV
18 coexg HVfVHfV
19 16 17 18 sylancl φHfV
20 19 ad2antrr φW¬AranfIsom<,<1WWHfV
21 1 2 3 4 5 6 7 8 9 10 11 12 gsumval3lem1 φW¬AranfIsom<,<1WWHf:1Fsupp0˙1-1 ontoFsupp0˙
22 fzfi 1MFin
23 suppssdm FHsupp0˙domFH
24 12 23 eqsstri WdomFH
25 7 14 fcod φFH:1MB
26 24 25 fssdm φW1M
27 ssfi 1MFinW1MWFin
28 22 26 27 sylancr φWFin
29 28 ad2antrr φW¬AranfIsom<,<1WWWFin
30 10 ad2antrr φW¬AranfIsom<,<1WWH:1M1-1A
31 26 ad2antrr φW¬AranfIsom<,<1WWW1M
32 f1ores H:1M1-1AW1MHW:W1-1 ontoHW
33 30 31 32 syl2anc φW¬AranfIsom<,<1WWHW:W1-1 ontoHW
34 12 imaeq2i HW=HFHsupp0˙
35 7 6 fexd φFV
36 ovex 1MV
37 fex H:1MA1MVHV
38 14 36 37 sylancl φHV
39 35 38 jca φFVHV
40 f1fun H:1M1-1AFunH
41 10 40 syl φFunH
42 41 11 jca φFunHFsupp0˙ranH
43 imacosupp FVHVFunHFsupp0˙ranHHFHsupp0˙=Fsupp0˙
44 39 42 43 sylc φHFHsupp0˙=Fsupp0˙
45 44 adantr φWHFHsupp0˙=Fsupp0˙
46 34 45 eqtrid φWHW=Fsupp0˙
47 46 adantr φW¬AranfIsom<,<1WWHW=Fsupp0˙
48 47 f1oeq3d φW¬AranfIsom<,<1WWHW:W1-1 ontoHWHW:W1-1 ontoFsupp0˙
49 33 48 mpbid φW¬AranfIsom<,<1WWHW:W1-1 ontoFsupp0˙
50 29 49 hasheqf1od φW¬AranfIsom<,<1WWW=Fsupp0˙
51 50 fveq2d φW¬AranfIsom<,<1WWseq1+˙FHfW=seq1+˙FHfFsupp0˙
52 21 51 jca φW¬AranfIsom<,<1WWHf:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FHfFsupp0˙
53 f1oeq1 g=Hfg:1Fsupp0˙1-1 ontoFsupp0˙Hf:1Fsupp0˙1-1 ontoFsupp0˙
54 coeq2 g=HfFg=FHf
55 54 seqeq3d g=Hfseq1+˙Fg=seq1+˙FHf
56 55 fveq1d g=Hfseq1+˙FgFsupp0˙=seq1+˙FHfFsupp0˙
57 56 eqeq2d g=Hfseq1+˙FHfW=seq1+˙FgFsupp0˙seq1+˙FHfW=seq1+˙FHfFsupp0˙
58 53 57 anbi12d g=Hfg:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙Hf:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FHfFsupp0˙
59 20 52 58 spcedv φW¬AranfIsom<,<1WWgg:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙
60 5 ad2antrr φW¬AranfIsom<,<1WWGMnd
61 6 ad2antrr φW¬AranfIsom<,<1WWAV
62 7 ad2antrr φW¬AranfIsom<,<1WWF:AB
63 8 ad2antrr φW¬AranfIsom<,<1WWranFZranF
64 f1f1orn H:1M1-1AH:1M1-1 ontoranH
65 10 64 syl φH:1M1-1 ontoranH
66 f1oen3g HVH:1M1-1 ontoranH1MranH
67 16 65 66 syl2anc φ1MranH
68 enfi 1MranH1MFinranHFin
69 67 68 syl φ1MFinranHFin
70 22 69 mpbii φranHFin
71 70 11 ssfid φFsupp0˙Fin
72 71 ad2antrr φW¬AranfIsom<,<1WWFsupp0˙Fin
73 12 neeq1i WFHsupp0˙
74 supp0cosupp0 FVHVFsupp0˙=FHsupp0˙=
75 74 necon3d FVHVFHsupp0˙Fsupp0˙
76 35 38 75 syl2anc φFHsupp0˙Fsupp0˙
77 73 76 biimtrid φWFsupp0˙
78 77 imp φWFsupp0˙
79 78 adantr φW¬AranfIsom<,<1WWFsupp0˙
80 11 ad2antrr φW¬AranfIsom<,<1WWFsupp0˙ranH
81 14 frnd φranHA
82 81 ad2antrr φW¬AranfIsom<,<1WWranHA
83 80 82 sstrd φW¬AranfIsom<,<1WWFsupp0˙A
84 1 2 3 4 60 61 62 63 72 79 83 gsumval3eu φW¬AranfIsom<,<1WW∃!xgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙
85 iota1 ∃!xgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙gg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙ιx|gg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙=x
86 84 85 syl φW¬AranfIsom<,<1WWgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙ιx|gg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙=x
87 eqid Fsupp0˙=Fsupp0˙
88 simprl φW¬AranfIsom<,<1WW¬Aran
89 1 2 3 4 60 61 62 63 72 79 87 88 gsumval3a φW¬AranfIsom<,<1WWGF=ιx|gg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙
90 89 eqeq1d φW¬AranfIsom<,<1WWGF=xιx|gg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙=x
91 86 90 bitr4d φW¬AranfIsom<,<1WWgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙GF=x
92 91 alrimiv φW¬AranfIsom<,<1WWxgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙GF=x
93 fvex seq1+˙FHfWV
94 eqeq1 x=seq1+˙FHfWx=seq1+˙FgFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙
95 94 anbi2d x=seq1+˙FHfWg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙g:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙
96 95 exbidv x=seq1+˙FHfWgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙gg:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙
97 eqeq2 x=seq1+˙FHfWGF=xGF=seq1+˙FHfW
98 96 97 bibi12d x=seq1+˙FHfWgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙GF=xgg:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙GF=seq1+˙FHfW
99 93 98 spcv xgg:1Fsupp0˙1-1 ontoFsupp0˙x=seq1+˙FgFsupp0˙GF=xgg:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙GF=seq1+˙FHfW
100 92 99 syl φW¬AranfIsom<,<1WWgg:1Fsupp0˙1-1 ontoFsupp0˙seq1+˙FHfW=seq1+˙FgFsupp0˙GF=seq1+˙FHfW
101 59 100 mpbid φW¬AranfIsom<,<1WWGF=seq1+˙FHfW