Metamath Proof Explorer


Theorem gsumval3lem2

Description: Lemma 2 for gsumval3 . (Contributed by AV, 31-May-2019)

Ref Expression
Hypotheses gsumval3.b B = Base G
gsumval3.0 0 ˙ = 0 G
gsumval3.p + ˙ = + G
gsumval3.z Z = Cntz G
gsumval3.g φ G Mnd
gsumval3.a φ A V
gsumval3.f φ F : A B
gsumval3.c φ ran F Z ran F
gsumval3.m φ M
gsumval3.h φ H : 1 M 1-1 A
gsumval3.n φ F supp 0 ˙ ran H
gsumval3.w W = F H supp 0 ˙
Assertion gsumval3lem2 φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H f W

Proof

Step Hyp Ref Expression
1 gsumval3.b B = Base G
2 gsumval3.0 0 ˙ = 0 G
3 gsumval3.p + ˙ = + G
4 gsumval3.z Z = Cntz G
5 gsumval3.g φ G Mnd
6 gsumval3.a φ A V
7 gsumval3.f φ F : A B
8 gsumval3.c φ ran F Z ran F
9 gsumval3.m φ M
10 gsumval3.h φ H : 1 M 1-1 A
11 gsumval3.n φ F supp 0 ˙ ran H
12 gsumval3.w W = F H supp 0 ˙
13 f1f H : 1 M 1-1 A H : 1 M A
14 10 13 syl φ H : 1 M A
15 fzfid φ 1 M Fin
16 fex2 H : 1 M A 1 M Fin A V H V
17 14 15 6 16 syl3anc φ H V
18 vex f V
19 coexg H V f V H f V
20 17 18 19 sylancl φ H f V
21 20 ad2antrr φ W ¬ A ran f Isom < , < 1 W W H f V
22 1 2 3 4 5 6 7 8 9 10 11 12 gsumval3lem1 φ W ¬ A ran f Isom < , < 1 W W H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙
23 fzfi 1 M Fin
24 suppssdm F H supp 0 ˙ dom F H
25 12 24 eqsstri W dom F H
26 fco F : A B H : 1 M A F H : 1 M B
27 7 14 26 syl2anc φ F H : 1 M B
28 25 27 fssdm φ W 1 M
29 ssfi 1 M Fin W 1 M W Fin
30 23 28 29 sylancr φ W Fin
31 30 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W Fin
32 10 ad2antrr φ W ¬ A ran f Isom < , < 1 W W H : 1 M 1-1 A
33 28 ad2antrr φ W ¬ A ran f Isom < , < 1 W W W 1 M
34 f1ores H : 1 M 1-1 A W 1 M H W : W 1-1 onto H W
35 32 33 34 syl2anc φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto H W
36 12 imaeq2i H W = H F H supp 0 ˙
37 fex F : A B A V F V
38 7 6 37 syl2anc φ F V
39 ovex 1 M V
40 fex H : 1 M A 1 M V H V
41 14 39 40 sylancl φ H V
42 38 41 jca φ F V H V
43 f1fun H : 1 M 1-1 A Fun H
44 10 43 syl φ Fun H
45 44 11 jca φ Fun H F supp 0 ˙ ran H
46 imacosupp F V H V Fun H F supp 0 ˙ ran H H F H supp 0 ˙ = F supp 0 ˙
47 42 45 46 sylc φ H F H supp 0 ˙ = F supp 0 ˙
48 47 adantr φ W H F H supp 0 ˙ = F supp 0 ˙
49 36 48 syl5eq φ W H W = F supp 0 ˙
50 49 adantr φ W ¬ A ran f Isom < , < 1 W W H W = F supp 0 ˙
51 50 f1oeq3d φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto H W H W : W 1-1 onto F supp 0 ˙
52 35 51 mpbid φ W ¬ A ran f Isom < , < 1 W W H W : W 1-1 onto F supp 0 ˙
53 31 52 hasheqf1od φ W ¬ A ran f Isom < , < 1 W W W = F supp 0 ˙
54 53 fveq2d φ W ¬ A ran f Isom < , < 1 W W seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
55 22 54 jca φ W ¬ A ran f Isom < , < 1 W W H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
56 f1oeq1 g = H f g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙
57 coeq2 g = H f F g = F H f
58 57 seqeq3d g = H f seq 1 + ˙ F g = seq 1 + ˙ F H f
59 58 fveq1d g = H f seq 1 + ˙ F g F supp 0 ˙ = seq 1 + ˙ F H f F supp 0 ˙
60 59 eqeq2d g = H f seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
61 56 60 anbi12d g = H f g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ H f : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F H f F supp 0 ˙
62 21 55 61 spcedv φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
63 5 ad2antrr φ W ¬ A ran f Isom < , < 1 W W G Mnd
64 6 ad2antrr φ W ¬ A ran f Isom < , < 1 W W A V
65 7 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F : A B
66 8 ad2antrr φ W ¬ A ran f Isom < , < 1 W W ran F Z ran F
67 f1f1orn H : 1 M 1-1 A H : 1 M 1-1 onto ran H
68 10 67 syl φ H : 1 M 1-1 onto ran H
69 f1oen3g H V H : 1 M 1-1 onto ran H 1 M ran H
70 17 68 69 syl2anc φ 1 M ran H
71 enfi 1 M ran H 1 M Fin ran H Fin
72 70 71 syl φ 1 M Fin ran H Fin
73 23 72 mpbii φ ran H Fin
74 73 11 ssfid φ F supp 0 ˙ Fin
75 74 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙ Fin
76 12 neeq1i W F H supp 0 ˙
77 supp0cosupp0 F V H V F supp 0 ˙ = F H supp 0 ˙ =
78 77 necon3d F V H V F H supp 0 ˙ F supp 0 ˙
79 38 41 78 syl2anc φ F H supp 0 ˙ F supp 0 ˙
80 76 79 syl5bi φ W F supp 0 ˙
81 80 imp φ W F supp 0 ˙
82 81 adantr φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙
83 11 ad2antrr φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙ ran H
84 14 frnd φ ran H A
85 84 ad2antrr φ W ¬ A ran f Isom < , < 1 W W ran H A
86 83 85 sstrd φ W ¬ A ran f Isom < , < 1 W W F supp 0 ˙ A
87 1 2 3 4 63 64 65 66 75 82 86 gsumval3eu φ W ¬ A ran f Isom < , < 1 W W ∃! x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙
88 iota1 ∃! x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ = x
89 87 88 syl φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ = x
90 eqid F supp 0 ˙ = F supp 0 ˙
91 simprl φ W ¬ A ran f Isom < , < 1 W W ¬ A ran
92 1 2 3 4 63 64 65 66 75 82 90 91 gsumval3a φ W ¬ A ran f Isom < , < 1 W W G F = ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙
93 92 eqeq1d φ W ¬ A ran f Isom < , < 1 W W G F = x ι x | g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ = x
94 89 93 bitr4d φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x
95 94 alrimiv φ W ¬ A ran f Isom < , < 1 W W x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x
96 fvex seq 1 + ˙ F H f W V
97 eqeq1 x = seq 1 + ˙ F H f W x = seq 1 + ˙ F g F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
98 97 anbi2d x = seq 1 + ˙ F H f W g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
99 98 exbidv x = seq 1 + ˙ F H f W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙
100 eqeq2 x = seq 1 + ˙ F H f W G F = x G F = seq 1 + ˙ F H f W
101 99 100 bibi12d x = seq 1 + ˙ F H f W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ G F = seq 1 + ˙ F H f W
102 96 101 spcv x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ x = seq 1 + ˙ F g F supp 0 ˙ G F = x g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ G F = seq 1 + ˙ F H f W
103 95 102 syl φ W ¬ A ran f Isom < , < 1 W W g g : 1 F supp 0 ˙ 1-1 onto F supp 0 ˙ seq 1 + ˙ F H f W = seq 1 + ˙ F g F supp 0 ˙ G F = seq 1 + ˙ F H f W
104 62 103 mpbid φ W ¬ A ran f Isom < , < 1 W W G F = seq 1 + ˙ F H f W