| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumval.b |  | 
						
							| 2 |  | gsumval.z |  | 
						
							| 3 |  | gsumval.p |  | 
						
							| 4 |  | gsumval.o |  | 
						
							| 5 |  | gsumval.w |  | 
						
							| 6 |  | gsumval.g |  | 
						
							| 7 |  | gsumvalx.f |  | 
						
							| 8 |  | gsumvalx.a |  | 
						
							| 9 |  | df-gsum |  | 
						
							| 10 | 9 | a1i |  | 
						
							| 11 |  | simprl |  | 
						
							| 12 | 11 | fveq2d |  | 
						
							| 13 | 12 1 | eqtr4di |  | 
						
							| 14 | 11 | fveq2d |  | 
						
							| 15 | 14 3 | eqtr4di |  | 
						
							| 16 | 15 | oveqd |  | 
						
							| 17 | 16 | eqeq1d |  | 
						
							| 18 | 15 | oveqd |  | 
						
							| 19 | 18 | eqeq1d |  | 
						
							| 20 | 17 19 | anbi12d |  | 
						
							| 21 | 13 20 | raleqbidv |  | 
						
							| 22 | 13 21 | rabeqbidv |  | 
						
							| 23 |  | oveq2 |  | 
						
							| 24 |  | id |  | 
						
							| 25 | 23 24 | eqeq12d |  | 
						
							| 26 |  | oveq1 |  | 
						
							| 27 | 26 24 | eqeq12d |  | 
						
							| 28 | 25 27 | anbi12d |  | 
						
							| 29 | 28 | cbvralvw |  | 
						
							| 30 |  | oveq1 |  | 
						
							| 31 | 30 | eqeq1d |  | 
						
							| 32 | 31 | ovanraleqv |  | 
						
							| 33 | 29 32 | bitrid |  | 
						
							| 34 | 33 | cbvrabv |  | 
						
							| 35 | 4 34 | eqtri |  | 
						
							| 36 | 22 35 | eqtr4di |  | 
						
							| 37 | 36 | csbeq1d |  | 
						
							| 38 | 1 | fvexi |  | 
						
							| 39 | 4 38 | rabex2 |  | 
						
							| 40 | 39 | a1i |  | 
						
							| 41 |  | simplrr |  | 
						
							| 42 | 41 | rneqd |  | 
						
							| 43 |  | simpr |  | 
						
							| 44 | 42 43 | sseq12d |  | 
						
							| 45 | 11 | adantr |  | 
						
							| 46 | 45 | fveq2d |  | 
						
							| 47 | 46 2 | eqtr4di |  | 
						
							| 48 | 41 | dmeqd |  | 
						
							| 49 | 8 | ad2antrr |  | 
						
							| 50 | 48 49 | eqtrd |  | 
						
							| 51 | 50 | eleq1d |  | 
						
							| 52 | 50 | eqeq1d |  | 
						
							| 53 | 15 | adantr |  | 
						
							| 54 | 53 | seqeq2d |  | 
						
							| 55 | 41 | seqeq3d |  | 
						
							| 56 | 54 55 | eqtrd |  | 
						
							| 57 | 56 | fveq1d |  | 
						
							| 58 | 57 | eqeq2d |  | 
						
							| 59 | 52 58 | anbi12d |  | 
						
							| 60 | 59 | rexbidv |  | 
						
							| 61 | 60 | exbidv |  | 
						
							| 62 | 61 | iotabidv |  | 
						
							| 63 | 43 | difeq2d |  | 
						
							| 64 | 63 | imaeq2d |  | 
						
							| 65 | 41 | cnveqd |  | 
						
							| 66 | 65 | imaeq1d |  | 
						
							| 67 | 5 | ad2antrr |  | 
						
							| 68 | 64 66 67 | 3eqtr4d |  | 
						
							| 69 | 68 | sbceq1d |  | 
						
							| 70 |  | cnvexg |  | 
						
							| 71 |  | imaexg |  | 
						
							| 72 | 7 70 71 | 3syl |  | 
						
							| 73 | 5 72 | eqeltrd |  | 
						
							| 74 | 73 | ad2antrr |  | 
						
							| 75 |  | fveq2 |  | 
						
							| 76 | 75 | adantl |  | 
						
							| 77 | 76 | oveq2d |  | 
						
							| 78 | 77 | f1oeq2d |  | 
						
							| 79 |  | f1oeq3 |  | 
						
							| 80 | 79 | adantl |  | 
						
							| 81 | 78 80 | bitrd |  | 
						
							| 82 | 53 | seqeq2d |  | 
						
							| 83 | 41 | coeq1d |  | 
						
							| 84 | 83 | seqeq3d |  | 
						
							| 85 | 82 84 | eqtrd |  | 
						
							| 86 | 85 | adantr |  | 
						
							| 87 | 86 76 | fveq12d |  | 
						
							| 88 | 87 | eqeq2d |  | 
						
							| 89 | 81 88 | anbi12d |  | 
						
							| 90 | 74 89 | sbcied |  | 
						
							| 91 | 69 90 | bitrd |  | 
						
							| 92 | 91 | exbidv |  | 
						
							| 93 | 92 | iotabidv |  | 
						
							| 94 | 51 62 93 | ifbieq12d |  | 
						
							| 95 | 44 47 94 | ifbieq12d |  | 
						
							| 96 | 40 95 | csbied |  | 
						
							| 97 | 37 96 | eqtrd |  | 
						
							| 98 | 6 | elexd |  | 
						
							| 99 | 7 | elexd |  | 
						
							| 100 | 2 | fvexi |  | 
						
							| 101 |  | iotaex |  | 
						
							| 102 |  | iotaex |  | 
						
							| 103 | 101 102 | ifex |  | 
						
							| 104 | 100 103 | ifex |  | 
						
							| 105 | 104 | a1i |  | 
						
							| 106 | 10 97 98 99 105 | ovmpod |  |