Metamath Proof Explorer


Theorem gsumvalx

Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses gsumval.b B=BaseG
gsumval.z 0˙=0G
gsumval.p +˙=+G
gsumval.o O=sB|tBs+˙t=tt+˙s=t
gsumval.w φW=F-1VO
gsumval.g φGV
gsumvalx.f φFX
gsumvalx.a φdomF=A
Assertion gsumvalx φGF=ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW

Proof

Step Hyp Ref Expression
1 gsumval.b B=BaseG
2 gsumval.z 0˙=0G
3 gsumval.p +˙=+G
4 gsumval.o O=sB|tBs+˙t=tt+˙s=t
5 gsumval.w φW=F-1VO
6 gsumval.g φGV
7 gsumvalx.f φFX
8 gsumvalx.a φdomF=A
9 df-gsum Σ𝑔=wV,gVxBasew|yBasewx+wy=yy+wx=y/oifrango0wifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy
10 9 a1i φΣ𝑔=wV,gVxBasew|yBasewx+wy=yy+wx=y/oifrango0wifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy
11 simprl φw=Gg=Fw=G
12 11 fveq2d φw=Gg=FBasew=BaseG
13 12 1 eqtr4di φw=Gg=FBasew=B
14 11 fveq2d φw=Gg=F+w=+G
15 14 3 eqtr4di φw=Gg=F+w=+˙
16 15 oveqd φw=Gg=Fx+wy=x+˙y
17 16 eqeq1d φw=Gg=Fx+wy=yx+˙y=y
18 15 oveqd φw=Gg=Fy+wx=y+˙x
19 18 eqeq1d φw=Gg=Fy+wx=yy+˙x=y
20 17 19 anbi12d φw=Gg=Fx+wy=yy+wx=yx+˙y=yy+˙x=y
21 13 20 raleqbidv φw=Gg=FyBasewx+wy=yy+wx=yyBx+˙y=yy+˙x=y
22 13 21 rabeqbidv φw=Gg=FxBasew|yBasewx+wy=yy+wx=y=xB|yBx+˙y=yy+˙x=y
23 oveq2 t=ys+˙t=s+˙y
24 id t=yt=y
25 23 24 eqeq12d t=ys+˙t=ts+˙y=y
26 oveq1 t=yt+˙s=y+˙s
27 26 24 eqeq12d t=yt+˙s=ty+˙s=y
28 25 27 anbi12d t=ys+˙t=tt+˙s=ts+˙y=yy+˙s=y
29 28 cbvralvw tBs+˙t=tt+˙s=tyBs+˙y=yy+˙s=y
30 oveq1 s=xs+˙y=x+˙y
31 30 eqeq1d s=xs+˙y=yx+˙y=y
32 31 ovanraleqv s=xyBs+˙y=yy+˙s=yyBx+˙y=yy+˙x=y
33 29 32 bitrid s=xtBs+˙t=tt+˙s=tyBx+˙y=yy+˙x=y
34 33 cbvrabv sB|tBs+˙t=tt+˙s=t=xB|yBx+˙y=yy+˙x=y
35 4 34 eqtri O=xB|yBx+˙y=yy+˙x=y
36 22 35 eqtr4di φw=Gg=FxBasew|yBasewx+wy=yy+wx=y=O
37 36 csbeq1d φw=Gg=FxBasew|yBasewx+wy=yy+wx=y/oifrango0wifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy=O/oifrango0wifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy
38 1 fvexi BV
39 4 38 rabex2 OV
40 39 a1i φw=Gg=FOV
41 simplrr φw=Gg=Fo=Og=F
42 41 rneqd φw=Gg=Fo=Orang=ranF
43 simpr φw=Gg=Fo=Oo=O
44 42 43 sseq12d φw=Gg=Fo=OrangoranFO
45 11 adantr φw=Gg=Fo=Ow=G
46 45 fveq2d φw=Gg=Fo=O0w=0G
47 46 2 eqtr4di φw=Gg=Fo=O0w=0˙
48 41 dmeqd φw=Gg=Fo=Odomg=domF
49 8 ad2antrr φw=Gg=Fo=OdomF=A
50 48 49 eqtrd φw=Gg=Fo=Odomg=A
51 50 eleq1d φw=Gg=Fo=OdomgranAran
52 50 eqeq1d φw=Gg=Fo=Odomg=mnA=mn
53 15 adantr φw=Gg=Fo=O+w=+˙
54 53 seqeq2d φw=Gg=Fo=Oseqm+wg=seqm+˙g
55 41 seqeq3d φw=Gg=Fo=Oseqm+˙g=seqm+˙F
56 54 55 eqtrd φw=Gg=Fo=Oseqm+wg=seqm+˙F
57 56 fveq1d φw=Gg=Fo=Oseqm+wgn=seqm+˙Fn
58 57 eqeq2d φw=Gg=Fo=Ox=seqm+wgnx=seqm+˙Fn
59 52 58 anbi12d φw=Gg=Fo=Odomg=mnx=seqm+wgnA=mnx=seqm+˙Fn
60 59 rexbidv φw=Gg=Fo=Onmdomg=mnx=seqm+wgnnmA=mnx=seqm+˙Fn
61 60 exbidv φw=Gg=Fo=Omnmdomg=mnx=seqm+wgnmnmA=mnx=seqm+˙Fn
62 61 iotabidv φw=Gg=Fo=Oιx|mnmdomg=mnx=seqm+wgn=ιx|mnmA=mnx=seqm+˙Fn
63 43 difeq2d φw=Gg=Fo=OVo=VO
64 63 imaeq2d φw=Gg=Fo=OF-1Vo=F-1VO
65 41 cnveqd φw=Gg=Fo=Og-1=F-1
66 65 imaeq1d φw=Gg=Fo=Og-1Vo=F-1Vo
67 5 ad2antrr φw=Gg=Fo=OW=F-1VO
68 64 66 67 3eqtr4d φw=Gg=Fo=Og-1Vo=W
69 68 sbceq1d φw=Gg=Fo=O[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy[˙W/y]˙f:1y1-1 ontoyx=seq1+wgfy
70 cnvexg FXF-1V
71 imaexg F-1VF-1VOV
72 7 70 71 3syl φF-1VOV
73 5 72 eqeltrd φWV
74 73 ad2antrr φw=Gg=Fo=OWV
75 fveq2 y=Wy=W
76 75 adantl φw=Gg=Fo=Oy=Wy=W
77 76 oveq2d φw=Gg=Fo=Oy=W1y=1W
78 77 f1oeq2d φw=Gg=Fo=Oy=Wf:1y1-1 ontoyf:1W1-1 ontoy
79 f1oeq3 y=Wf:1W1-1 ontoyf:1W1-1 ontoW
80 79 adantl φw=Gg=Fo=Oy=Wf:1W1-1 ontoyf:1W1-1 ontoW
81 78 80 bitrd φw=Gg=Fo=Oy=Wf:1y1-1 ontoyf:1W1-1 ontoW
82 53 seqeq2d φw=Gg=Fo=Oseq1+wgf=seq1+˙gf
83 41 coeq1d φw=Gg=Fo=Ogf=Ff
84 83 seqeq3d φw=Gg=Fo=Oseq1+˙gf=seq1+˙Ff
85 82 84 eqtrd φw=Gg=Fo=Oseq1+wgf=seq1+˙Ff
86 85 adantr φw=Gg=Fo=Oy=Wseq1+wgf=seq1+˙Ff
87 86 76 fveq12d φw=Gg=Fo=Oy=Wseq1+wgfy=seq1+˙FfW
88 87 eqeq2d φw=Gg=Fo=Oy=Wx=seq1+wgfyx=seq1+˙FfW
89 81 88 anbi12d φw=Gg=Fo=Oy=Wf:1y1-1 ontoyx=seq1+wgfyf:1W1-1 ontoWx=seq1+˙FfW
90 74 89 sbcied φw=Gg=Fo=O[˙W/y]˙f:1y1-1 ontoyx=seq1+wgfyf:1W1-1 ontoWx=seq1+˙FfW
91 69 90 bitrd φw=Gg=Fo=O[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfyf:1W1-1 ontoWx=seq1+˙FfW
92 91 exbidv φw=Gg=Fo=Of[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfyff:1W1-1 ontoWx=seq1+˙FfW
93 92 iotabidv φw=Gg=Fo=Oιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy=ιx|ff:1W1-1 ontoWx=seq1+˙FfW
94 51 62 93 ifbieq12d φw=Gg=Fo=Oifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy=ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW
95 44 47 94 ifbieq12d φw=Gg=Fo=Oifrango0wifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy=ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW
96 40 95 csbied φw=Gg=FO/oifrango0wifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy=ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW
97 37 96 eqtrd φw=Gg=FxBasew|yBasewx+wy=yy+wx=y/oifrango0wifdomgranιx|mnmdomg=mnx=seqm+wgnιx|f[˙g-1Vo/y]˙f:1y1-1 ontoyx=seq1+wgfy=ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW
98 6 elexd φGV
99 7 elexd φFV
100 2 fvexi 0˙V
101 iotaex ιx|mnmA=mnx=seqm+˙FnV
102 iotaex ιx|ff:1W1-1 ontoWx=seq1+˙FfWV
103 101 102 ifex ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfWV
104 100 103 ifex ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfWV
105 104 a1i φifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfWV
106 10 97 98 99 105 ovmpod φGF=ifranFO0˙ifAranιx|mnmA=mnx=seqm+˙Fnιx|ff:1W1-1 ontoWx=seq1+˙FfW