Metamath Proof Explorer


Theorem gsumvalx

Description: Expand out the substitutions in df-gsum . (Contributed by Mario Carneiro, 18-Sep-2015)

Ref Expression
Hypotheses gsumval.b B = Base G
gsumval.z 0 ˙ = 0 G
gsumval.p + ˙ = + G
gsumval.o O = s B | t B s + ˙ t = t t + ˙ s = t
gsumval.w φ W = F -1 V O
gsumval.g φ G V
gsumvalx.f φ F X
gsumvalx.a φ dom F = A
Assertion gsumvalx φ G F = if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W

Proof

Step Hyp Ref Expression
1 gsumval.b B = Base G
2 gsumval.z 0 ˙ = 0 G
3 gsumval.p + ˙ = + G
4 gsumval.o O = s B | t B s + ˙ t = t t + ˙ s = t
5 gsumval.w φ W = F -1 V O
6 gsumval.g φ G V
7 gsumvalx.f φ F X
8 gsumvalx.a φ dom F = A
9 df-gsum Σ𝑔 = w V , g V x Base w | y Base w x + w y = y y + w x = y / o if ran g o 0 w if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y
10 9 a1i φ Σ𝑔 = w V , g V x Base w | y Base w x + w y = y y + w x = y / o if ran g o 0 w if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y
11 simprl φ w = G g = F w = G
12 11 fveq2d φ w = G g = F Base w = Base G
13 12 1 eqtr4di φ w = G g = F Base w = B
14 11 fveq2d φ w = G g = F + w = + G
15 14 3 eqtr4di φ w = G g = F + w = + ˙
16 15 oveqd φ w = G g = F x + w y = x + ˙ y
17 16 eqeq1d φ w = G g = F x + w y = y x + ˙ y = y
18 15 oveqd φ w = G g = F y + w x = y + ˙ x
19 18 eqeq1d φ w = G g = F y + w x = y y + ˙ x = y
20 17 19 anbi12d φ w = G g = F x + w y = y y + w x = y x + ˙ y = y y + ˙ x = y
21 13 20 raleqbidv φ w = G g = F y Base w x + w y = y y + w x = y y B x + ˙ y = y y + ˙ x = y
22 13 21 rabeqbidv φ w = G g = F x Base w | y Base w x + w y = y y + w x = y = x B | y B x + ˙ y = y y + ˙ x = y
23 oveq2 t = y s + ˙ t = s + ˙ y
24 id t = y t = y
25 23 24 eqeq12d t = y s + ˙ t = t s + ˙ y = y
26 oveq1 t = y t + ˙ s = y + ˙ s
27 26 24 eqeq12d t = y t + ˙ s = t y + ˙ s = y
28 25 27 anbi12d t = y s + ˙ t = t t + ˙ s = t s + ˙ y = y y + ˙ s = y
29 28 cbvralvw t B s + ˙ t = t t + ˙ s = t y B s + ˙ y = y y + ˙ s = y
30 oveq1 s = x s + ˙ y = x + ˙ y
31 30 eqeq1d s = x s + ˙ y = y x + ˙ y = y
32 31 ovanraleqv s = x y B s + ˙ y = y y + ˙ s = y y B x + ˙ y = y y + ˙ x = y
33 29 32 syl5bb s = x t B s + ˙ t = t t + ˙ s = t y B x + ˙ y = y y + ˙ x = y
34 33 cbvrabv s B | t B s + ˙ t = t t + ˙ s = t = x B | y B x + ˙ y = y y + ˙ x = y
35 4 34 eqtri O = x B | y B x + ˙ y = y y + ˙ x = y
36 22 35 eqtr4di φ w = G g = F x Base w | y Base w x + w y = y y + w x = y = O
37 36 csbeq1d φ w = G g = F x Base w | y Base w x + w y = y y + w x = y / o if ran g o 0 w if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y = O / o if ran g o 0 w if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y
38 1 fvexi B V
39 4 38 rabex2 O V
40 39 a1i φ w = G g = F O V
41 simplrr φ w = G g = F o = O g = F
42 41 rneqd φ w = G g = F o = O ran g = ran F
43 simpr φ w = G g = F o = O o = O
44 42 43 sseq12d φ w = G g = F o = O ran g o ran F O
45 11 adantr φ w = G g = F o = O w = G
46 45 fveq2d φ w = G g = F o = O 0 w = 0 G
47 46 2 eqtr4di φ w = G g = F o = O 0 w = 0 ˙
48 41 dmeqd φ w = G g = F o = O dom g = dom F
49 8 ad2antrr φ w = G g = F o = O dom F = A
50 48 49 eqtrd φ w = G g = F o = O dom g = A
51 50 eleq1d φ w = G g = F o = O dom g ran A ran
52 50 eqeq1d φ w = G g = F o = O dom g = m n A = m n
53 15 adantr φ w = G g = F o = O + w = + ˙
54 53 seqeq2d φ w = G g = F o = O seq m + w g = seq m + ˙ g
55 41 seqeq3d φ w = G g = F o = O seq m + ˙ g = seq m + ˙ F
56 54 55 eqtrd φ w = G g = F o = O seq m + w g = seq m + ˙ F
57 56 fveq1d φ w = G g = F o = O seq m + w g n = seq m + ˙ F n
58 57 eqeq2d φ w = G g = F o = O x = seq m + w g n x = seq m + ˙ F n
59 52 58 anbi12d φ w = G g = F o = O dom g = m n x = seq m + w g n A = m n x = seq m + ˙ F n
60 59 rexbidv φ w = G g = F o = O n m dom g = m n x = seq m + w g n n m A = m n x = seq m + ˙ F n
61 60 exbidv φ w = G g = F o = O m n m dom g = m n x = seq m + w g n m n m A = m n x = seq m + ˙ F n
62 61 iotabidv φ w = G g = F o = O ι x | m n m dom g = m n x = seq m + w g n = ι x | m n m A = m n x = seq m + ˙ F n
63 43 difeq2d φ w = G g = F o = O V o = V O
64 63 imaeq2d φ w = G g = F o = O F -1 V o = F -1 V O
65 41 cnveqd φ w = G g = F o = O g -1 = F -1
66 65 imaeq1d φ w = G g = F o = O g -1 V o = F -1 V o
67 5 ad2antrr φ w = G g = F o = O W = F -1 V O
68 64 66 67 3eqtr4d φ w = G g = F o = O g -1 V o = W
69 68 sbceq1d φ w = G g = F o = O [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y [˙W / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y
70 cnvexg F X F -1 V
71 imaexg F -1 V F -1 V O V
72 7 70 71 3syl φ F -1 V O V
73 5 72 eqeltrd φ W V
74 73 ad2antrr φ w = G g = F o = O W V
75 fveq2 y = W y = W
76 75 adantl φ w = G g = F o = O y = W y = W
77 76 oveq2d φ w = G g = F o = O y = W 1 y = 1 W
78 77 f1oeq2d φ w = G g = F o = O y = W f : 1 y 1-1 onto y f : 1 W 1-1 onto y
79 f1oeq3 y = W f : 1 W 1-1 onto y f : 1 W 1-1 onto W
80 79 adantl φ w = G g = F o = O y = W f : 1 W 1-1 onto y f : 1 W 1-1 onto W
81 78 80 bitrd φ w = G g = F o = O y = W f : 1 y 1-1 onto y f : 1 W 1-1 onto W
82 53 seqeq2d φ w = G g = F o = O seq 1 + w g f = seq 1 + ˙ g f
83 41 coeq1d φ w = G g = F o = O g f = F f
84 83 seqeq3d φ w = G g = F o = O seq 1 + ˙ g f = seq 1 + ˙ F f
85 82 84 eqtrd φ w = G g = F o = O seq 1 + w g f = seq 1 + ˙ F f
86 85 adantr φ w = G g = F o = O y = W seq 1 + w g f = seq 1 + ˙ F f
87 86 76 fveq12d φ w = G g = F o = O y = W seq 1 + w g f y = seq 1 + ˙ F f W
88 87 eqeq2d φ w = G g = F o = O y = W x = seq 1 + w g f y x = seq 1 + ˙ F f W
89 81 88 anbi12d φ w = G g = F o = O y = W f : 1 y 1-1 onto y x = seq 1 + w g f y f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
90 74 89 sbcied φ w = G g = F o = O [˙W / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
91 69 90 bitrd φ w = G g = F o = O [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
92 91 exbidv φ w = G g = F o = O f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
93 92 iotabidv φ w = G g = F o = O ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y = ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
94 51 62 93 ifbieq12d φ w = G g = F o = O if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y = if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
95 44 47 94 ifbieq12d φ w = G g = F o = O if ran g o 0 w if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y = if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
96 40 95 csbied φ w = G g = F O / o if ran g o 0 w if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y = if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
97 37 96 eqtrd φ w = G g = F x Base w | y Base w x + w y = y y + w x = y / o if ran g o 0 w if dom g ran ι x | m n m dom g = m n x = seq m + w g n ι x | f [˙ g -1 V o / y]˙ f : 1 y 1-1 onto y x = seq 1 + w g f y = if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W
98 6 elexd φ G V
99 7 elexd φ F V
100 2 fvexi 0 ˙ V
101 iotaex ι x | m n m A = m n x = seq m + ˙ F n V
102 iotaex ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W V
103 101 102 ifex if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W V
104 100 103 ifex if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W V
105 104 a1i φ if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W V
106 10 97 98 99 105 ovmpod φ G F = if ran F O 0 ˙ if A ran ι x | m n m A = m n x = seq m + ˙ F n ι x | f f : 1 W 1-1 onto W x = seq 1 + ˙ F f W