Metamath Proof Explorer


Theorem gsumzoppg

Description: The opposite of a group sum is the same as the original. (Contributed by Mario Carneiro, 25-Apr-2016) (Revised by AV, 6-Jun-2019)

Ref Expression
Hypotheses gsumzoppg.b B=BaseG
gsumzoppg.0 0˙=0G
gsumzoppg.z Z=CntzG
gsumzoppg.o O=opp𝑔G
gsumzoppg.g φGMnd
gsumzoppg.a φAV
gsumzoppg.f φF:AB
gsumzoppg.c φranFZranF
gsumzoppg.n φfinSupp0˙F
Assertion gsumzoppg φOF=GF

Proof

Step Hyp Ref Expression
1 gsumzoppg.b B=BaseG
2 gsumzoppg.0 0˙=0G
3 gsumzoppg.z Z=CntzG
4 gsumzoppg.o O=opp𝑔G
5 gsumzoppg.g φGMnd
6 gsumzoppg.a φAV
7 gsumzoppg.f φF:AB
8 gsumzoppg.c φranFZranF
9 gsumzoppg.n φfinSupp0˙F
10 4 oppgmnd GMndOMnd
11 5 10 syl φOMnd
12 4 2 oppgid 0˙=0O
13 12 gsumz OMndAVOkA0˙=0˙
14 11 6 13 syl2anc φOkA0˙=0˙
15 2 gsumz GMndAVGkA0˙=0˙
16 5 6 15 syl2anc φGkA0˙=0˙
17 14 16 eqtr4d φOkA0˙=GkA0˙
18 17 adantr φF-1V0˙=OkA0˙=GkA0˙
19 2 fvexi 0˙V
20 19 a1i φ0˙V
21 ssid F-1V0˙F-1V0˙
22 7 6 fexd φFV
23 suppimacnv FV0˙VFsupp0˙=F-1V0˙
24 22 19 23 sylancl φFsupp0˙=F-1V0˙
25 24 sseq1d φFsupp0˙F-1V0˙F-1V0˙F-1V0˙
26 21 25 mpbiri φFsupp0˙F-1V0˙
27 7 6 20 26 gsumcllem φF-1V0˙=F=kA0˙
28 27 oveq2d φF-1V0˙=OF=OkA0˙
29 27 oveq2d φF-1V0˙=GF=GkA0˙
30 18 28 29 3eqtr4d φF-1V0˙=OF=GF
31 30 ex φF-1V0˙=OF=GF
32 simprl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F-1V0˙
33 nnuz =1
34 32 33 eleqtrdi φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F-1V0˙1
35 7 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F:AB
36 ffn F:ABFFnA
37 dffn4 FFnAF:AontoranF
38 36 37 sylib F:ABF:AontoranF
39 fof F:AontoranFF:AranF
40 35 38 39 3syl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F:AranF
41 5 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙GMnd
42 1 submacs GMndSubMndGACSB
43 acsmre SubMndGACSBSubMndGMooreB
44 41 42 43 3syl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙SubMndGMooreB
45 eqid mrClsSubMndG=mrClsSubMndG
46 35 frnd φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙ranFB
47 44 45 46 mrcssidd φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙ranFmrClsSubMndGranF
48 40 47 fssd φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F:AmrClsSubMndGranF
49 f1of1 f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙1-1F-1V0˙
50 49 ad2antll φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙1-1F-1V0˙
51 cnvimass F-1V0˙domF
52 51 35 fssdm φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F-1V0˙A
53 f1ss f:1F-1V0˙1-1F-1V0˙F-1V0˙Af:1F-1V0˙1-1A
54 50 52 53 syl2anc φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙1-1A
55 f1f f:1F-1V0˙1-1Af:1F-1V0˙A
56 54 55 syl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙A
57 fco F:AmrClsSubMndGranFf:1F-1V0˙AFf:1F-1V0˙mrClsSubMndGranF
58 48 56 57 syl2anc φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Ff:1F-1V0˙mrClsSubMndGranF
59 58 ffvelcdmda φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙x1F-1V0˙FfxmrClsSubMndGranF
60 45 mrccl SubMndGMooreBranFBmrClsSubMndGranFSubMndG
61 44 46 60 syl2anc φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙mrClsSubMndGranFSubMndG
62 4 oppgsubm SubMndG=SubMndO
63 61 62 eleqtrdi φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙mrClsSubMndGranFSubMndO
64 eqid +O=+O
65 64 submcl mrClsSubMndGranFSubMndOxmrClsSubMndGranFymrClsSubMndGranFx+OymrClsSubMndGranF
66 65 3expb mrClsSubMndGranFSubMndOxmrClsSubMndGranFymrClsSubMndGranFx+OymrClsSubMndGranF
67 63 66 sylan φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xmrClsSubMndGranFymrClsSubMndGranFx+OymrClsSubMndGranF
68 eqid +G=+G
69 68 4 64 oppgplus x+Oy=y+Gx
70 8 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙ranFZranF
71 eqid G𝑠mrClsSubMndGranF=G𝑠mrClsSubMndGranF
72 3 45 71 cntzspan GMndranFZranFG𝑠mrClsSubMndGranFCMnd
73 41 70 72 syl2anc φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙G𝑠mrClsSubMndGranFCMnd
74 71 3 submcmn2 mrClsSubMndGranFSubMndGG𝑠mrClsSubMndGranFCMndmrClsSubMndGranFZmrClsSubMndGranF
75 61 74 syl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙G𝑠mrClsSubMndGranFCMndmrClsSubMndGranFZmrClsSubMndGranF
76 73 75 mpbid φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙mrClsSubMndGranFZmrClsSubMndGranF
77 76 sselda φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xmrClsSubMndGranFxZmrClsSubMndGranF
78 68 3 cntzi xZmrClsSubMndGranFymrClsSubMndGranFx+Gy=y+Gx
79 77 78 sylan φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xmrClsSubMndGranFymrClsSubMndGranFx+Gy=y+Gx
80 69 79 eqtr4id φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xmrClsSubMndGranFymrClsSubMndGranFx+Oy=x+Gy
81 80 anasss φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙xmrClsSubMndGranFymrClsSubMndGranFx+Oy=x+Gy
82 34 59 67 81 seqfeq4 φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙seq1+OFfF-1V0˙=seq1+GFfF-1V0˙
83 4 1 oppgbas B=BaseO
84 eqid CntzO=CntzO
85 41 10 syl φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙OMnd
86 6 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙AV
87 4 3 oppgcntz ZranF=CntzOranF
88 70 87 sseqtrdi φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙ranFCntzOranF
89 suppssdm Fsupp0˙domF
90 24 89 eqsstrrdi φF-1V0˙domF
91 7 90 fssdmd φF-1V0˙A
92 91 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙F-1V0˙A
93 50 92 53 syl2anc φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙1-1A
94 25 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙F-1V0˙F-1V0˙F-1V0˙
95 21 94 mpbiri φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙F-1V0˙
96 f1ofo f:1F-1V0˙1-1 ontoF-1V0˙f:1F-1V0˙ontoF-1V0˙
97 forn f:1F-1V0˙ontoF-1V0˙ranf=F-1V0˙
98 96 97 syl f:1F-1V0˙1-1 ontoF-1V0˙ranf=F-1V0˙
99 98 sseq2d f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙ranfFsupp0˙F-1V0˙
100 99 ad2antll φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙ranfFsupp0˙F-1V0˙
101 95 100 mpbird φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙ranf
102 eqid Ffsupp0˙=Ffsupp0˙
103 83 12 64 84 85 86 35 88 32 93 101 102 gsumval3 φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙OF=seq1+OFfF-1V0˙
104 26 adantr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙F-1V0˙
105 104 100 mpbird φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙Fsupp0˙ranf
106 1 2 68 3 41 86 35 70 32 93 105 102 gsumval3 φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙GF=seq1+GFfF-1V0˙
107 82 103 106 3eqtr4d φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙OF=GF
108 107 expr φF-1V0˙f:1F-1V0˙1-1 ontoF-1V0˙OF=GF
109 108 exlimdv φF-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙OF=GF
110 109 expimpd φF-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙OF=GF
111 9 fsuppimpd φFsupp0˙Fin
112 24 111 eqeltrrd φF-1V0˙Fin
113 fz1f1o F-1V0˙FinF-1V0˙=F-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙
114 112 113 syl φF-1V0˙=F-1V0˙ff:1F-1V0˙1-1 ontoF-1V0˙
115 31 110 114 mpjaod φOF=GF