| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumzsplit.b |
|
| 2 |
|
gsumzsplit.0 |
|
| 3 |
|
gsumzsplit.p |
|
| 4 |
|
gsumzsplit.z |
|
| 5 |
|
gsumzsplit.g |
|
| 6 |
|
gsumzsplit.a |
|
| 7 |
|
gsumzsplit.f |
|
| 8 |
|
gsumzsplit.c |
|
| 9 |
|
gsumzsplit.w |
|
| 10 |
|
gsumzsplit.i |
|
| 11 |
|
gsumzsplit.u |
|
| 12 |
2
|
fvexi |
|
| 13 |
12
|
a1i |
|
| 14 |
7 6 13 9
|
fsuppmptif |
|
| 15 |
7 6 13 9
|
fsuppmptif |
|
| 16 |
1
|
submacs |
|
| 17 |
|
acsmre |
|
| 18 |
5 16 17
|
3syl |
|
| 19 |
7
|
frnd |
|
| 20 |
|
eqid |
|
| 21 |
20
|
mrccl |
|
| 22 |
18 19 21
|
syl2anc |
|
| 23 |
|
eqid |
|
| 24 |
4 20 23
|
cntzspan |
|
| 25 |
5 8 24
|
syl2anc |
|
| 26 |
23 4
|
submcmn2 |
|
| 27 |
22 26
|
syl |
|
| 28 |
25 27
|
mpbid |
|
| 29 |
18 20 19
|
mrcssidd |
|
| 30 |
29
|
adantr |
|
| 31 |
7
|
ffnd |
|
| 32 |
|
fnfvelrn |
|
| 33 |
31 32
|
sylan |
|
| 34 |
30 33
|
sseldd |
|
| 35 |
2
|
subm0cl |
|
| 36 |
22 35
|
syl |
|
| 37 |
36
|
adantr |
|
| 38 |
34 37
|
ifcld |
|
| 39 |
38
|
fmpttd |
|
| 40 |
34 37
|
ifcld |
|
| 41 |
40
|
fmpttd |
|
| 42 |
1 2 3 4 5 6 14 15 22 28 39 41
|
gsumzadd |
|
| 43 |
7
|
feqmptd |
|
| 44 |
|
iftrue |
|
| 45 |
44
|
adantl |
|
| 46 |
|
noel |
|
| 47 |
|
eleq2 |
|
| 48 |
46 47
|
mtbiri |
|
| 49 |
10 48
|
syl |
|
| 50 |
49
|
adantr |
|
| 51 |
|
elin |
|
| 52 |
50 51
|
sylnib |
|
| 53 |
|
imnan |
|
| 54 |
52 53
|
sylibr |
|
| 55 |
54
|
imp |
|
| 56 |
55
|
iffalsed |
|
| 57 |
45 56
|
oveq12d |
|
| 58 |
7
|
ffvelcdmda |
|
| 59 |
1 3 2
|
mndrid |
|
| 60 |
5 58 59
|
syl2an2r |
|
| 61 |
60
|
adantr |
|
| 62 |
57 61
|
eqtrd |
|
| 63 |
54
|
con2d |
|
| 64 |
63
|
imp |
|
| 65 |
64
|
iffalsed |
|
| 66 |
|
iftrue |
|
| 67 |
66
|
adantl |
|
| 68 |
65 67
|
oveq12d |
|
| 69 |
1 3 2
|
mndlid |
|
| 70 |
5 58 69
|
syl2an2r |
|
| 71 |
70
|
adantr |
|
| 72 |
68 71
|
eqtrd |
|
| 73 |
11
|
eleq2d |
|
| 74 |
|
elun |
|
| 75 |
73 74
|
bitrdi |
|
| 76 |
75
|
biimpa |
|
| 77 |
62 72 76
|
mpjaodan |
|
| 78 |
77
|
mpteq2dva |
|
| 79 |
43 78
|
eqtr4d |
|
| 80 |
1 2
|
mndidcl |
|
| 81 |
5 80
|
syl |
|
| 82 |
81
|
adantr |
|
| 83 |
58 82
|
ifcld |
|
| 84 |
58 82
|
ifcld |
|
| 85 |
|
eqidd |
|
| 86 |
|
eqidd |
|
| 87 |
6 83 84 85 86
|
offval2 |
|
| 88 |
79 87
|
eqtr4d |
|
| 89 |
88
|
oveq2d |
|
| 90 |
43
|
reseq1d |
|
| 91 |
|
ssun1 |
|
| 92 |
91 11
|
sseqtrrid |
|
| 93 |
44
|
mpteq2ia |
|
| 94 |
|
resmpt |
|
| 95 |
|
resmpt |
|
| 96 |
93 94 95
|
3eqtr4a |
|
| 97 |
92 96
|
syl |
|
| 98 |
90 97
|
eqtr4d |
|
| 99 |
98
|
oveq2d |
|
| 100 |
83
|
fmpttd |
|
| 101 |
39
|
frnd |
|
| 102 |
4
|
cntzidss |
|
| 103 |
28 101 102
|
syl2anc |
|
| 104 |
|
eldifn |
|
| 105 |
104
|
adantl |
|
| 106 |
105
|
iffalsed |
|
| 107 |
106 6
|
suppss2 |
|
| 108 |
1 2 4 5 6 100 103 107 14
|
gsumzres |
|
| 109 |
99 108
|
eqtrd |
|
| 110 |
43
|
reseq1d |
|
| 111 |
|
ssun2 |
|
| 112 |
111 11
|
sseqtrrid |
|
| 113 |
66
|
mpteq2ia |
|
| 114 |
|
resmpt |
|
| 115 |
|
resmpt |
|
| 116 |
113 114 115
|
3eqtr4a |
|
| 117 |
112 116
|
syl |
|
| 118 |
110 117
|
eqtr4d |
|
| 119 |
118
|
oveq2d |
|
| 120 |
84
|
fmpttd |
|
| 121 |
41
|
frnd |
|
| 122 |
4
|
cntzidss |
|
| 123 |
28 121 122
|
syl2anc |
|
| 124 |
|
eldifn |
|
| 125 |
124
|
adantl |
|
| 126 |
125
|
iffalsed |
|
| 127 |
126 6
|
suppss2 |
|
| 128 |
1 2 4 5 6 120 123 127 15
|
gsumzres |
|
| 129 |
119 128
|
eqtrd |
|
| 130 |
109 129
|
oveq12d |
|
| 131 |
42 89 130
|
3eqtr4d |
|