Metamath Proof Explorer


Theorem hgt750lema

Description: An upper bound on the contribution of the non-prime terms in the Statement 7.50 of Helfgott p. 69. (Contributed by Thierry Arnoux, 1-Jan-2022)

Ref Expression
Hypotheses hgt750leme.o O=z|¬2z
hgt750leme.n φN
hgt750lemb.2 φ2N
hgt750lemb.a A=crepr3N|¬c0O
hgt750lema.f F=dcrepr3N|¬caOdifa=0I0..^3pmTrsp0..^3a0
Assertion hgt750lema φnrepr3NOrepr3NΛn0Λn1Λn23nAΛn0Λn1Λn2

Proof

Step Hyp Ref Expression
1 hgt750leme.o O=z|¬2z
2 hgt750leme.n φN
3 hgt750lemb.2 φ2N
4 hgt750lemb.a A=crepr3N|¬c0O
5 hgt750lema.f F=dcrepr3N|¬caOdifa=0I0..^3pmTrsp0..^3a0
6 fzofi 0..^3Fin
7 6 a1i φ0..^3Fin
8 2 nnnn0d φN0
9 3nn0 30
10 9 a1i φ30
11 ssidd φ
12 8 10 11 reprfi2 φrepr3NFin
13 ssrab2 crepr3N|¬caOrepr3N
14 13 a1i φcrepr3N|¬caOrepr3N
15 12 14 ssfid φcrepr3N|¬caOFin
16 15 adantr φa0..^3crepr3N|¬caOFin
17 vmaf Λ:
18 17 a1i φa0..^3ncrepr3N|¬caOΛ:
19 ssidd φa0..^3ncrepr3N|¬caO
20 8 nn0zd φN
21 20 ad2antrr φa0..^3ncrepr3N|¬caON
22 9 a1i φa0..^3ncrepr3N|¬caO30
23 simpr φa0..^3ncrepr3N|¬caOncrepr3N|¬caO
24 13 23 sselid φa0..^3ncrepr3N|¬caOnrepr3N
25 19 21 22 24 reprf φa0..^3ncrepr3N|¬caOn:0..^3
26 c0ex 0V
27 26 tpid1 0012
28 fzo0to3tp 0..^3=012
29 27 28 eleqtrri 00..^3
30 29 a1i φa0..^3ncrepr3N|¬caO00..^3
31 25 30 ffvelcdmd φa0..^3ncrepr3N|¬caOn0
32 18 31 ffvelcdmd φa0..^3ncrepr3N|¬caOΛn0
33 1ex 1V
34 33 tpid2 1012
35 34 28 eleqtrri 10..^3
36 35 a1i φa0..^3ncrepr3N|¬caO10..^3
37 25 36 ffvelcdmd φa0..^3ncrepr3N|¬caOn1
38 18 37 ffvelcdmd φa0..^3ncrepr3N|¬caOΛn1
39 2ex 2V
40 39 tpid3 2012
41 40 28 eleqtrri 20..^3
42 41 a1i φa0..^3ncrepr3N|¬caO20..^3
43 25 42 ffvelcdmd φa0..^3ncrepr3N|¬caOn2
44 18 43 ffvelcdmd φa0..^3ncrepr3N|¬caOΛn2
45 38 44 remulcld φa0..^3ncrepr3N|¬caOΛn1Λn2
46 32 45 remulcld φa0..^3ncrepr3N|¬caOΛn0Λn1Λn2
47 vmage0 n00Λn0
48 31 47 syl φa0..^3ncrepr3N|¬caO0Λn0
49 vmage0 n10Λn1
50 37 49 syl φa0..^3ncrepr3N|¬caO0Λn1
51 vmage0 n20Λn2
52 43 51 syl φa0..^3ncrepr3N|¬caO0Λn2
53 38 44 50 52 mulge0d φa0..^3ncrepr3N|¬caO0Λn1Λn2
54 32 45 48 53 mulge0d φa0..^3ncrepr3N|¬caO0Λn0Λn1Λn2
55 7 16 46 54 fsumiunle φna0..^3crepr3N|¬caOΛn0Λn1Λn2a0..^3ncrepr3N|¬caOΛn0Λn1Λn2
56 eqid crepr3N|¬caO=crepr3N|¬caO
57 inss2 O
58 prmssnn
59 57 58 sstri O
60 59 a1i φO
61 56 11 60 8 10 reprdifc φrepr3NOrepr3N=a0..^3crepr3N|¬caO
62 61 sumeq1d φnrepr3NOrepr3NΛn0Λn1Λn2=na0..^3crepr3N|¬caOΛn0Λn1Λn2
63 ssrab2 crepr3N|¬c0Orepr3N
64 63 a1i φcrepr3N|¬c0Orepr3N
65 12 64 ssfid φcrepr3N|¬c0OFin
66 17 a1i φncrepr3N|¬c0OΛ:
67 ssidd φncrepr3N|¬c0O
68 20 adantr φncrepr3N|¬c0ON
69 9 a1i φncrepr3N|¬c0O30
70 64 sselda φncrepr3N|¬c0Onrepr3N
71 67 68 69 70 reprf φncrepr3N|¬c0On:0..^3
72 29 a1i φncrepr3N|¬c0O00..^3
73 71 72 ffvelcdmd φncrepr3N|¬c0On0
74 66 73 ffvelcdmd φncrepr3N|¬c0OΛn0
75 35 a1i φncrepr3N|¬c0O10..^3
76 71 75 ffvelcdmd φncrepr3N|¬c0On1
77 66 76 ffvelcdmd φncrepr3N|¬c0OΛn1
78 41 a1i φncrepr3N|¬c0O20..^3
79 71 78 ffvelcdmd φncrepr3N|¬c0On2
80 66 79 ffvelcdmd φncrepr3N|¬c0OΛn2
81 77 80 remulcld φncrepr3N|¬c0OΛn1Λn2
82 74 81 remulcld φncrepr3N|¬c0OΛn0Λn1Λn2
83 65 82 fsumrecl φncrepr3N|¬c0OΛn0Λn1Λn2
84 83 recnd φncrepr3N|¬c0OΛn0Λn1Λn2
85 fsumconst 0..^3Finncrepr3N|¬c0OΛn0Λn1Λn2a0..^3ncrepr3N|¬c0OΛn0Λn1Λn2=0..^3ncrepr3N|¬c0OΛn0Λn1Λn2
86 7 84 85 syl2anc φa0..^3ncrepr3N|¬c0OΛn0Λn1Λn2=0..^3ncrepr3N|¬c0OΛn0Λn1Λn2
87 fveq1 n=Fen0=Fe0
88 87 fveq2d n=FeΛn0=ΛFe0
89 fveq1 n=Fen1=Fe1
90 89 fveq2d n=FeΛn1=ΛFe1
91 fveq1 n=Fen2=Fe2
92 91 fveq2d n=FeΛn2=ΛFe2
93 90 92 oveq12d n=FeΛn1Λn2=ΛFe1ΛFe2
94 88 93 oveq12d n=FeΛn0Λn1Λn2=ΛFe0ΛFe1ΛFe2
95 3nn 3
96 95 a1i φ3
97 96 ralrimivw φa0..^33
98 97 r19.21bi φa0..^33
99 20 adantr φa0..^3N
100 ssidd φa0..^3
101 simpr φa0..^3a0..^3
102 fveq1 c=dc0=d0
103 102 eleq1d c=dc0Od0O
104 103 notbid c=d¬c0O¬d0O
105 104 cbvrabv crepr3N|¬c0O=drepr3N|¬d0O
106 fveq1 c=dca=da
107 106 eleq1d c=dcaOdaO
108 107 notbid c=d¬caO¬daO
109 108 cbvrabv crepr3N|¬caO=drepr3N|¬daO
110 eqid ifa=0I0..^3pmTrsp0..^3a0=ifa=0I0..^3pmTrsp0..^3a0
111 98 99 100 101 105 109 110 5 reprpmtf1o φa0..^3F:crepr3N|¬caO1-1 ontocrepr3N|¬c0O
112 eqidd φa0..^3ecrepr3N|¬caOFe=Fe
113 82 adantlr φa0..^3ncrepr3N|¬c0OΛn0Λn1Λn2
114 113 recnd φa0..^3ncrepr3N|¬c0OΛn0Λn1Λn2
115 94 16 111 112 114 fsumf1o φa0..^3ncrepr3N|¬c0OΛn0Λn1Λn2=ecrepr3N|¬caOΛFe0ΛFe1ΛFe2
116 fveq2 e=nFe=Fn
117 116 fveq1d e=nFe0=Fn0
118 117 fveq2d e=nΛFe0=ΛFn0
119 116 fveq1d e=nFe1=Fn1
120 119 fveq2d e=nΛFe1=ΛFn1
121 116 fveq1d e=nFe2=Fn2
122 121 fveq2d e=nΛFe2=ΛFn2
123 120 122 oveq12d e=nΛFe1ΛFe2=ΛFn1ΛFn2
124 118 123 oveq12d e=nΛFe0ΛFe1ΛFe2=ΛFn0ΛFn1ΛFn2
125 124 cbvsumv ecrepr3N|¬caOΛFe0ΛFe1ΛFe2=ncrepr3N|¬caOΛFn0ΛFn1ΛFn2
126 125 a1i φa0..^3ecrepr3N|¬caOΛFe0ΛFe1ΛFe2=ncrepr3N|¬caOΛFn0ΛFn1ΛFn2
127 ovexd φa0..^3ncrepr3N|¬caO0..^3V
128 101 adantr φa0..^3ncrepr3N|¬caOa0..^3
129 127 128 30 110 pmtridf1o φa0..^3ncrepr3N|¬caOifa=0I0..^3pmTrsp0..^3a0:0..^31-1 onto0..^3
130 5 129 25 18 23 hgt750lemg φa0..^3ncrepr3N|¬caOΛFn0ΛFn1ΛFn2=Λn0Λn1Λn2
131 130 sumeq2dv φa0..^3ncrepr3N|¬caOΛFn0ΛFn1ΛFn2=ncrepr3N|¬caOΛn0Λn1Λn2
132 115 126 131 3eqtrrd φa0..^3ncrepr3N|¬caOΛn0Λn1Λn2=ncrepr3N|¬c0OΛn0Λn1Λn2
133 132 sumeq2dv φa0..^3ncrepr3N|¬caOΛn0Λn1Λn2=a0..^3ncrepr3N|¬c0OΛn0Λn1Λn2
134 hashfzo0 300..^3=3
135 9 134 ax-mp 0..^3=3
136 135 a1i φ0..^3=3
137 136 eqcomd φ3=0..^3
138 4 a1i φA=crepr3N|¬c0O
139 138 sumeq1d φnAΛn0Λn1Λn2=ncrepr3N|¬c0OΛn0Λn1Λn2
140 137 139 oveq12d φ3nAΛn0Λn1Λn2=0..^3ncrepr3N|¬c0OΛn0Λn1Λn2
141 86 133 140 3eqtr4rd φ3nAΛn0Λn1Λn2=a0..^3ncrepr3N|¬caOΛn0Λn1Λn2
142 55 62 141 3brtr4d φnrepr3NOrepr3NΛn0Λn1Λn23nAΛn0Λn1Λn2