Metamath Proof Explorer


Theorem hhssnv

Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008) (New usage is discouraged.)

Ref Expression
Hypotheses hhssnvt.1 W=+H×H×HnormH
hhssnv.2 HS
Assertion hhssnv WNrmCVec

Proof

Step Hyp Ref Expression
1 hhssnvt.1 W=+H×H×HnormH
2 hhssnv.2 HS
3 2 hhssabloi +H×HAbelOp
4 ablogrpo +H×HAbelOp+H×HGrpOp
5 3 4 ax-mp +H×HGrpOp
6 2 shssii H
7 xpss12 HHH×H×
8 6 6 7 mp2an H×H×
9 ax-hfvadd +:×
10 9 fdmi dom+=×
11 8 10 sseqtrri H×Hdom+
12 ssdmres H×Hdom+dom+H×H=H×H
13 11 12 mpbi dom+H×H=H×H
14 5 13 grporn H=ran+H×H
15 sh0 HS0H
16 2 15 ax-mp 0H
17 ovres 0H0H0+H×H0=0+0
18 16 16 17 mp2an 0+H×H0=0+0
19 ax-hv0cl 0
20 19 hvaddlidi 0+0=0
21 18 20 eqtri 0+H×H0=0
22 eqid GId+H×H=GId+H×H
23 14 22 grpoid +H×HGrpOp0H0=GId+H×H0+H×H0=0
24 5 16 23 mp2an 0=GId+H×H0+H×H0=0
25 21 24 mpbir 0=GId+H×H
26 ax-hfvmul :×
27 ffn :×Fn×
28 26 27 ax-mp Fn×
29 ssid
30 xpss12 H×H×
31 29 6 30 mp2an ×H×
32 fnssres Fn××H××HFn×H
33 28 31 32 mp2an ×HFn×H
34 ovelrn ×HFn×Hzran×HxyHz=x×Hy
35 33 34 ax-mp zran×HxyHz=x×Hy
36 ovres xyHx×Hy=xy
37 shmulcl HSxyHxyH
38 2 37 mp3an1 xyHxyH
39 36 38 eqeltrd xyHx×HyH
40 eleq1 z=x×HyzHx×HyH
41 39 40 syl5ibrcom xyHz=x×HyzH
42 41 rexlimivv xyHz=x×HyzH
43 35 42 sylbi zran×HzH
44 43 ssriv ran×HH
45 df-f ×H:×HH×HFn×Hran×HH
46 33 44 45 mpbir2an ×H:×HH
47 ax-1cn 1
48 ovres 1xH1×Hx=1x
49 47 48 mpan xH1×Hx=1x
50 2 sheli xHx
51 ax-hvmulid x1x=x
52 50 51 syl xH1x=x
53 49 52 eqtrd xH1×Hx=x
54 id yy
55 2 sheli zHz
56 ax-hvdistr1 yxzyx+z=yx+yz
57 54 50 55 56 syl3an yxHzHyx+z=yx+yz
58 ovres xHzHx+H×Hz=x+z
59 58 3adant1 yxHzHx+H×Hz=x+z
60 59 oveq2d yxHzHy×Hx+H×Hz=y×Hx+z
61 shaddcl HSxHzHx+zH
62 2 61 mp3an1 xHzHx+zH
63 ovres yx+zHy×Hx+z=yx+z
64 62 63 sylan2 yxHzHy×Hx+z=yx+z
65 64 3impb yxHzHy×Hx+z=yx+z
66 60 65 eqtrd yxHzHy×Hx+H×Hz=yx+z
67 ovres yxHy×Hx=yx
68 67 3adant3 yxHzHy×Hx=yx
69 ovres yzHy×Hz=yz
70 69 3adant2 yxHzHy×Hz=yz
71 68 70 oveq12d yxHzHy×Hx+H×Hy×Hz=yx+H×Hyz
72 shmulcl HSyxHyxH
73 2 72 mp3an1 yxHyxH
74 73 3adant3 yxHzHyxH
75 shmulcl HSyzHyzH
76 2 75 mp3an1 yzHyzH
77 76 3adant2 yxHzHyzH
78 74 77 ovresd yxHzHyx+H×Hyz=yx+yz
79 71 78 eqtrd yxHzHy×Hx+H×Hy×Hz=yx+yz
80 57 66 79 3eqtr4d yxHzHy×Hx+H×Hz=y×Hx+H×Hy×Hz
81 ax-hvdistr2 yzxy+zx=yx+zx
82 50 81 syl3an3 yzxHy+zx=yx+zx
83 addcl yzy+z
84 ovres y+zxHy+z×Hx=y+zx
85 83 84 stoic3 yzxHy+z×Hx=y+zx
86 67 3adant2 yzxHy×Hx=yx
87 ovres zxHz×Hx=zx
88 87 3adant1 yzxHz×Hx=zx
89 86 88 oveq12d yzxHy×Hx+H×Hz×Hx=yx+H×Hzx
90 73 3adant2 yzxHyxH
91 shmulcl HSzxHzxH
92 2 91 mp3an1 zxHzxH
93 92 3adant1 yzxHzxH
94 90 93 ovresd yzxHyx+H×Hzx=yx+zx
95 89 94 eqtrd yzxHy×Hx+H×Hz×Hx=yx+zx
96 82 85 95 3eqtr4d yzxHy+z×Hx=y×Hx+H×Hz×Hx
97 ax-hvmulass yzxyzx=yzx
98 50 97 syl3an3 yzxHyzx=yzx
99 mulcl yzyz
100 ovres yzxHyz×Hx=yzx
101 99 100 stoic3 yzxHyz×Hx=yzx
102 88 oveq2d yzxHy×Hz×Hx=y×Hzx
103 ovres yzxHy×Hzx=yzx
104 92 103 sylan2 yzxHy×Hzx=yzx
105 104 3impb yzxHy×Hzx=yzx
106 102 105 eqtrd yzxHy×Hz×Hx=yzx
107 98 101 106 3eqtr4d yzxHyz×Hx=y×Hz×Hx
108 eqid +H×H×H=+H×H×H
109 3 13 46 53 80 96 107 108 isvciOLD +H×H×HCVecOLD
110 normf norm:
111 fssres norm:HnormH:H
112 110 6 111 mp2an normH:H
113 fvres xHnormHx=normx
114 113 eqeq1d xHnormHx=0normx=0
115 norm-i xnormx=0x=0
116 50 115 syl xHnormx=0x=0
117 114 116 bitrd xHnormHx=0x=0
118 117 biimpa xHnormHx=0x=0
119 norm-iii yxnormyx=ynormx
120 50 119 sylan2 yxHnormyx=ynormx
121 67 fveq2d yxHnormHy×Hx=normHyx
122 fvres yxHnormHyx=normyx
123 73 122 syl yxHnormHyx=normyx
124 121 123 eqtrd yxHnormHy×Hx=normyx
125 113 adantl yxHnormHx=normx
126 125 oveq2d yxHynormHx=ynormx
127 120 124 126 3eqtr4d yxHnormHy×Hx=ynormHx
128 2 sheli yHy
129 norm-ii xynormx+ynormx+normy
130 50 128 129 syl2an xHyHnormx+ynormx+normy
131 ovres xHyHx+H×Hy=x+y
132 131 fveq2d xHyHnormHx+H×Hy=normHx+y
133 shaddcl HSxHyHx+yH
134 2 133 mp3an1 xHyHx+yH
135 fvres x+yHnormHx+y=normx+y
136 134 135 syl xHyHnormHx+y=normx+y
137 132 136 eqtrd xHyHnormHx+H×Hy=normx+y
138 fvres yHnormHy=normy
139 113 138 oveqan12d xHyHnormHx+normHy=normx+normy
140 130 137 139 3brtr4d xHyHnormHx+H×HynormHx+normHy
141 14 25 109 112 118 127 140 1 isnvi WNrmCVec