Metamath Proof Explorer


Theorem icopnfhmeo

Description: The defined bijection from [ 0 , 1 ) to [ 0 , +oo ) is an order isomorphism and a homeomorphism. (Contributed by Mario Carneiro, 9-Sep-2015)

Ref Expression
Hypotheses icopnfhmeo.f F=x01x1x
icopnfhmeo.j J=TopOpenfld
Assertion icopnfhmeo FIsom<,<010+∞FJ𝑡01HomeoJ𝑡0+∞

Proof

Step Hyp Ref Expression
1 icopnfhmeo.f F=x01x1x
2 icopnfhmeo.j J=TopOpenfld
3 1 icopnfcnv F:011-1 onto0+∞F-1=y0+∞y1+y
4 3 simpli F:011-1 onto0+∞
5 0re 0
6 1xr 1*
7 elico2 01*x01x0xx<1
8 5 6 7 mp2an x01x0xx<1
9 8 simp1bi x01x
10 9 ssriv 01
11 10 sseli z01z
12 11 adantr z01w01z
13 elico2 01*w01w0ww<1
14 5 6 13 mp2an w01w0ww<1
15 14 simp3bi w01w<1
16 10 sseli w01w
17 1re 1
18 difrp w1w<11w+
19 16 17 18 sylancl w01w<11w+
20 15 19 mpbid w011w+
21 20 rpregt0d w011w0<1w
22 21 adantl z01w011w0<1w
23 16 adantl z01w01w
24 elico2 01*z01z0zz<1
25 5 6 24 mp2an z01z0zz<1
26 25 simp3bi z01z<1
27 difrp z1z<11z+
28 11 17 27 sylancl z01z<11z+
29 26 28 mpbid z011z+
30 29 adantr z01w011z+
31 30 rpregt0d z01w011z0<1z
32 lt2mul2div z1w0<1ww1z0<1zz1w<w1zz1z<w1w
33 12 22 23 31 32 syl22anc z01w01z1w<w1zz1z<w1w
34 12 23 remulcld z01w01zw
35 12 23 34 ltsub1d z01w01z<wzzw<wzw
36 12 recnd z01w01z
37 1cnd z01w011
38 23 recnd z01w01w
39 36 37 38 subdid z01w01z1w=z1zw
40 36 mulridd z01w01z1=z
41 40 oveq1d z01w01z1zw=zzw
42 39 41 eqtrd z01w01z1w=zzw
43 38 37 36 subdid z01w01w1z=w1wz
44 38 mulridd z01w01w1=w
45 38 36 mulcomd z01w01wz=zw
46 44 45 oveq12d z01w01w1wz=wzw
47 43 46 eqtrd z01w01w1z=wzw
48 42 47 breq12d z01w01z1w<w1zzzw<wzw
49 35 48 bitr4d z01w01z<wz1w<w1z
50 id x=zx=z
51 oveq2 x=z1x=1z
52 50 51 oveq12d x=zx1x=z1z
53 ovex z1zV
54 52 1 53 fvmpt z01Fz=z1z
55 id x=wx=w
56 oveq2 x=w1x=1w
57 55 56 oveq12d x=wx1x=w1w
58 ovex w1wV
59 57 1 58 fvmpt w01Fw=w1w
60 54 59 breqan12d z01w01Fz<Fwz1z<w1w
61 33 49 60 3bitr4d z01w01z<wFz<Fw
62 61 rgen2 z01w01z<wFz<Fw
63 df-isom FIsom<,<010+∞F:011-1 onto0+∞z01w01z<wFz<Fw
64 4 62 63 mpbir2an FIsom<,<010+∞
65 letsr TosetRel
66 65 elexi V
67 66 inex1 01×01V
68 66 inex1 0+∞×0+∞V
69 icossxr 01*
70 icossxr 0+∞*
71 leiso 01*0+∞*FIsom<,<010+∞FIsom,010+∞
72 69 70 71 mp2an FIsom<,<010+∞FIsom,010+∞
73 64 72 mpbi FIsom,010+∞
74 isores1 FIsom,010+∞FIsom01×01,010+∞
75 73 74 mpbi FIsom01×01,010+∞
76 isores2 FIsom01×01,010+∞FIsom01×01,0+∞×0+∞010+∞
77 75 76 mpbi FIsom01×01,0+∞×0+∞010+∞
78 tsrps TosetRelPosetRel
79 65 78 ax-mp PosetRel
80 ledm *=dom
81 80 psssdm PosetRel01*dom01×01=01
82 79 69 81 mp2an dom01×01=01
83 82 eqcomi 01=dom01×01
84 80 psssdm PosetRel0+∞*dom0+∞×0+∞=0+∞
85 79 70 84 mp2an dom0+∞×0+∞=0+∞
86 85 eqcomi 0+∞=dom0+∞×0+∞
87 83 86 ordthmeo 01×01V0+∞×0+∞VFIsom01×01,0+∞×0+∞010+∞FordTop01×01HomeoordTop0+∞×0+∞
88 67 68 77 87 mp3an FordTop01×01HomeoordTop0+∞×0+∞
89 eqid ordTop=ordTop
90 2 89 xrrest2 01J𝑡01=ordTop𝑡01
91 10 90 ax-mp J𝑡01=ordTop𝑡01
92 iccssico2 x01y01xy01
93 69 92 ordtrestixx ordTop𝑡01=ordTop01×01
94 91 93 eqtri J𝑡01=ordTop01×01
95 rge0ssre 0+∞
96 2 89 xrrest2 0+∞J𝑡0+∞=ordTop𝑡0+∞
97 95 96 ax-mp J𝑡0+∞=ordTop𝑡0+∞
98 iccssico2 x0+∞y0+∞xy0+∞
99 70 98 ordtrestixx ordTop𝑡0+∞=ordTop0+∞×0+∞
100 97 99 eqtri J𝑡0+∞=ordTop0+∞×0+∞
101 94 100 oveq12i J𝑡01HomeoJ𝑡0+∞=ordTop01×01HomeoordTop0+∞×0+∞
102 88 101 eleqtrri FJ𝑡01HomeoJ𝑡0+∞
103 64 102 pm3.2i FIsom<,<010+∞FJ𝑡01HomeoJ𝑡0+∞